Assessment of Impact of Climate Change on Biodiversity of Gandaki Province, Nepal

Provincial Government

Ministry of Industry, Tourism, Forest and Environment

Forest Research and Training Centre

Pokhara, Kaski, Gandaki Province

July, 2019

© Forest Research and Training Center, Gandaki Province, 2019

Any reproduction of this publication in full or in part should mention the title and credit FRTC, Gandaki Province.

Citation:

FRTC. 2019. Assessment of the Impact of Climate Change on Biodiversity of Gandaki Provice, Forest Research and Training Center (FRTC), Pokhara, Gandaki Province.

Contact Address: Forest Research and Training Centre Tel: 977 061456974 Email: frtc.gandaki@gmail.com Website: frtc.gandaki.gov.np

ACKNOWLEDGMENTS

The overall objective of this study was to predict the potential impacts of future climate change on the biodiversity of Gandaki Province. Forest Research and Training Centre, Pokhara firstly would like to thank SMART Pvt. Ltd., Kathmandu, for their crucial role in completing this research project. FRTC would like to thank officers Mr. Basanta Sharma, Mr. Ghanendra Khanal, Mr. Govinda Thapa, Mrs. Anshu Dhakal, Rangers Mr. Rajesh Pokhrel, Ms Chungla Sherpa for their suggestions, support and coordinations during the study period. Further, special thanks goes to all the Division Forest Offices of Gandaki Province, Soil and Watershed Management offices Parbat and Tanahun, Annapurna Conservation Area Project, Manaslu Conservation Area Project and Dhorpatan Hunting Reserve, students, members of community forest user groups, local peoples, and local guides for sharing the valuable information during discussion and meetings to the study team.

Thank You.

Rhally:

Rajesh Malla **Director** Forest Research and Training Centre Pokhara, Gandaki Province

ABSTRACT

Conservation of biodiversity is becoming a challenging task due to climate change, land use land cover change and anthropogenic pressures on it throughout the world. Due to more effect of climate change in Himalaya than average, the biodiversity of this region is facing the serious threat. This study was designed to explore the impact of climate change on biodiversity in Gandaki Province. Here, species occurrence points and environmental variables (bio-climatic and topographical) were used and current and future distribution of nine species (three species of threatened wildlife: common leopard (*Panthera pardus*), musk deer (*Moschus chrysogaster*), snow leopard (*Panthera uncia*); three species of high value NTFP: ban lasun/Himalayan onion (*A. wallichii*), chiraito (*Swertia chiraita*), lokta (*[Daphne bholua](https://en.wikipedia.org/wiki/Daphne_bholua)*) and three species of major timber and fuel wood trees: chilaune (*Shima wallichi*), sal (*Shorea robusta*), utis (*Alnus nepalensis*) were predicted using Maximum Entropy (MaxEnt) model. The representative concentration pathway (RCP) 4.5 scenario was used to predict the future distribution of all nine species. Distribution of all nine species will be shrinkage remarkably in 2070 due to climate change. Except for *S. robusta* and *S. wallichi*, distribution of all species will be shifted towards the northern sides. In this study, the impact of only climatic was analyzed. The result might be different if other variables were used.Here other factors like edaphic factors, land use change, human management to conserve the species, adaptation, genetic mutation, and resistance to change were not calculated. Generally, this kind of study can be designed for large scale. Due to small area of the province, some resultsmay me inflated.

TABLE OF CONTENTS

LIST OF FIGURES

1.INTRODUCTION

Background

Biodiversity is a source of the important economic asset. For instance, biodiversity helps to improve the productivity of ecosystems (Wilsey & Potvin, 2000). Now a days, climate change is becoming a severe threat to biodiversity (González-Orozco et al., 2016). Often species react to climate change by shifting distribution to follow changing the environmental situation, by adapting to changing conditions in location, or, if unable to do either, by remaining in isolated pockets of the unchanged environment or, more likely, becoming extinct (Holt, 1990). Similar to climate change, the land use change is also becoming the emerging threat to conserve the biodiversity and may lead the greater species loss in tropics (Jetz, Wilcove, & Dobson, 2007). Furthermore, the global biodiversity resource has been declining continuously over the last several decades, mainly due to heavy anthropogenic pressures on it (Tittensor et al., 2014). The extinction rate of species is about 1000 times more than the likely background rate, and these rates are supposed to increase in future (Pimm et al., 2014). Agricultural activities and overexploitation of the biological resources such as crop production and livestock farming are identified as the main causes of worldwide biodiversity loss (Maxwell, Fuller, Brooks, & Watson, 2016). Domesticated animals and habitat fragmentation are major challenges for wildlife conservation (Bentley, Catterall, & Smith, 2000; Loss, Will, & Marra, 2013). The socio-political situation of the country is directly responsible for the conservation of biological resources (Barnes et al., 2016). Less developed countries like Nepal are focusing on the production of food and management of shelter for their people. Due to the poverty (Adams et al., 2004), humanwildlife conflict (Acharya, Paudel, Neupane, & Kohl, 2016), overexploitation of biological resources and tourism pressure on protected areas (Bhattarai et al., 2017), people's dependency on forests and consequent deforestation as well as forest fragmentation (Uddin et al., 2015) Nepal is facing more difficulties for biodiversity conservation.

Carnivores and large herbivorous mammals, considering as flagship species are indicators of rich and stable biodiversity (Simberloff, 1998). For example, the presence of tiger, snow leopard (*Panthera uncia)*, and common leopard *(Panthera pardus)* is an indication of the existence of small mammals and vegetation. They are top consumers and maintaining the ecological system from

high trophic level; therefore, conservation of flagship species leads to conservation of overall biodiversity in the region (Williemas, Burgess, & Rahbeck, 2000). Conservation of large mammals is more challenging due to the requirement of large habitat patches and a large number of feeding resources. Some species like giant panda do not prefer the small patches of fragmented habitats (Wang, Ye, Skidmore, & Toxopeus, 2010). Also, the human-wildlife conflict is a major conservation challenge to conserve the large mammals because of their aggressive behavior to human fatalities (Acharya et al., 2016).

This study had selected nine species based on the importance of the species and the availability of adequate species occurrence points of the modeling.

Common leopard (*Panthera pardus* **)**

The common leopard (*P. pardus*) is a [leopard](https://en.wikipedia.org/wiki/Leopard) [subspecies](https://en.wikipedia.org/wiki/Leopard) widely distributed on the [Indian](https://en.wikipedia.org/wiki/Indian_subcontinent) [subcontinent.](https://en.wikipedia.org/wiki/Indian_subcontinent) The [species](https://en.wikipedia.org/wiki/Species_(biology)) *P. pardus* is listed as [vulnerable](https://en.wikipedia.org/wiki/Vulnerable_species) on the International Union for Conservation of Nature [\(IUCN\) Red List b](https://en.wikipedia.org/wiki/IUCN_Red_List)ecause populations have declined following [habitat](https://en.wikipedia.org/wiki/Habitat_loss) [loss a](https://en.wikipedia.org/wiki/Habitat_loss)nd [fragmentation, poaching f](https://en.wikipedia.org/wiki/Habitat_fragmentation)or the [illegal trade o](https://en.wikipedia.org/wiki/Wildlife_trade#Illegal_wildlife_trade)f skins and body parts, and persecution due to conflict situations (Stein et al., 2016). The *P. pardus* is a versatile, opportunistic hunter, and has a very broad diet. It can take large prey due to its massive skull and powerful jaw muscles. The number of *P. pardus* in the country has significantly gone down in the last few years due to shortage of food and lack of safe habitat. A report published by IUCN in 2012 showed Nepal had a total of 1,000 *P. pardus*. The report had also stated that the number of *P. pardus* was decreasing every year (Stein et al., 2016).

Musk deer (*Moschus chrysogaster***)**

Musk deer (*M. chrysogaster*), small compact [deer,](https://www.britannica.com/animal/deer) family Cervidae (order Artiodactyla) is a solitary shy [animal. T](https://www.britannica.com/animal/animal)he *M. chrysogaster* lives in mountainous regions from [Siberia](https://www.britannica.com/place/Siberia) to the [Himalayas. I](https://www.britannica.com/place/Himalayas)t has large ears, a very short tail, no antlers, and, unlike all other deer, a gall [bladder.](https://www.britannica.com/science/gallbladder) The *M. chrysogaster* is grayish brown, with long coarse, brittle hair, and stands 50–60 cm (20–24 inches) at the shoulder, slightly higher at the rump. The male has long upper canine teeth that project downward from the mouth as tusks and has a musk-producing organ, the musk pod, on its abdomen. The musk from that organ is valued for use in perfumes and soaps. The *M. chrysogaster* is listed as endangered in IUCN red data list and Appendix I of CITES (Convention on

International Trade in Endangered Species of Wild Fauna and Flora) (CITES, 2017; Harris, 2016).

Snow leopard (*Panthera uncia***)**

The snow leopard (*P. uncia*), also known as the ounce, is a large [cat n](https://en.wikipedia.org/wiki/Felidae)ative to the mountain ranges of [Central](https://en.wikipedia.org/wiki/Central_Asia) and [Southern](https://en.wikipedia.org/wiki/South_Asia) Asia. It is listed as [vulnerable](https://en.wikipedia.org/wiki/Vulnerable_species) on the [IUCN](https://en.wikipedia.org/wiki/IUCN_Red_List) Red List because the global population is estimated to number less than 10,000 mature individuals and decline about 10% until 2040. It is threatened by [poaching](https://en.wikipedia.org/wiki/Poaching) and habitat destruction following infrastructural developments. It inhabits alpine and [subalpine zones](https://en.wikipedia.org/wiki/Subalpine_zone) at elevations from 3,000 to 4,500 m (McCarthy, Mallon, Jackson, Zahler, & McCarthy, 2017).

Ban lasun (*Allium wallichii***)**

Himalayan onion/ban lasun (*A. wallichii*) is a perennial herb with numerous purple flowers, borne in a lax rounded umbel 5-7 cm across, on top of a leafless 3-angled flowering-stem; 1-3 ft. It is a high value Non-Timber Forest Product (NTFP). Petals are broadly linear blunt, spreading in a star, at length reflexed, longer than the purple stamens and ovary. Leaves are many, spear-shaped, flat and keeled, up to 2 cm broad, often almost as long as the flowering stem. Bulb is solitary or clustered, cylindrical; tunic yellowish brown, fibrous. Himalayan onion is found in the Himalayas, from Pakistan to south west China, at altitudes of 2800-4300 m. Its bulb is used to treat asthma, bronchitis, and bleeding during cough, especially during tuberculosis. A paste of the bulb is applied to check bleeding from wounds and to treat pimples (Tiwari et al., 2014).

Chiraito (*Swertia chiraita***)**

Chiraito (*S. chiraita*) has been used by Nepali locals since the old days, and this is one of the traditional medicinal herbs used by people of Nepal. This herb is mainly used for the treatment of stomach aches, constipation, excess urination, parasites cure, and malaria treatment. The *S. chiraita* is a popular medicine herb found in forests and open slopes of the Himalayan region of 1600-2500 m above sea level. The plant of *S. chiraita* is made of an ingredient called "chiratin" which is bitter in taste. The illegal harvesting of this herb is banned by the government of Nepal. The *S. chiraita* herbs are legally farmed within the community forests and subsidiary lands on eastern hilly regions of Nepal (GoN/MFSC, 2013).

Lokta (*[Daphne](https://en.wikipedia.org/wiki/Daphne_bholua) bholua***)**

Nepalese handmade lokta paper is made from the fibrous inner bark of high elevation [evergreen](https://en.wikipedia.org/wiki/Evergreen) [shrubs](https://en.wikipedia.org/wiki/Evergreen) primarily from two species of [Daphne \(plant\)](https://en.wikipedia.org/wiki/Daphne_(plant)) (Greek: meaning "Laurel"): *[Daphne bholua](https://en.wikipedia.org/wiki/Daphne_bholua)* and *[Daphne papyracea](https://en.wikipedia.org/wiki/Daphne_papyracea)*, known collectively and vernacularly as lokta bushes. The *[D. bholua](https://en.wikipedia.org/wiki/Daphne_bholua)* are found in moist regions at altitudes ranging from 6,000 to 10,000 feet. The fiber for making the paper is extracted from the bark of this plant. October signals the beginning of the *[D. bholua](https://en.wikipedia.org/wiki/Daphne_bholua)* collection season. It is harvested like sugarcane by cutting the stem about 30 cm above the ground. Interestingly, the *[D. bholua](https://en.wikipedia.org/wiki/Daphne_bholua)* have the special ability to regenerate and reach maturity within 4 to 5 years after the first cutting (Jackson, 1987).

Chilaune (*Schima wallichi***)**

Chilaune (*S. wallichi*) is a medium evergreen tree up to 35 m tall. However, in most places, it may be seen only 40 ft high. The stem is cylindrical, branchless for up to 25 m, diameter up to 1 m, with steep buttresses rarely up to 1.8 m high; bark surface ruggedly cracked into small, thick, angular pieces, red-brown to dark grey; inner bark with skin-irritating fibers, bright red in color. Leathery leaves are elliptic-oblong in shape and look somewhat like Champa (*Michelia*) leaves. *S. wallichi* has fast growth even under infertile soil conditions. Flowering is in April-May, and fruiting is in February-March (Shaw, Roy, & Wilson, 2015). The main value of *S. wallichi* is its hard and durable timber.

Sal (*Shorea robusta***)**

Sal (*S. robusta*) is a timber yielding dominant tree that occurs commonly on the plains and lower foothills of the Himalayas and is distributed both in the tropical moist and in the dry deciduous forests of India, Bangladesh, Nepal, and Bhutan (Gautam & Devoe, 2005). *S. robusta* forests naturally occur in eco-regions with a mean annual temperature ranging from 22 to 27°C and mean annual rainfall of 1,000 to 2,000 mm (Gautam & Devoe, 2005). Although *S. robusta* is listed as a "least concern" species in the IUCN Red List (Ashton, 1998), recurrent anthropogenic disturbances such as overexploitation, deforestation, and encroachment combined with climate change, are major threats to *S. robusta* forests (Kushwaha & Nandy, 2012).

Utis (*Alnus nepalensis***)**

Utis (*A. nepalensis*) is large [deciduous alder w](https://en.wikipedia.org/wiki/Deciduous)ith silver-gray bark that reaches up to 30 m in height and 60 cm in diameter. The [leaves](https://en.wikipedia.org/wiki/Leaf) are alternate, simple, shallowly toothed, with prominent veins parallel to each other, 7–16 cm long and 5–10 cm broad. The [flowers a](https://en.wikipedia.org/wiki/Flower)re [catkins, w](https://en.wikipedia.org/wiki/Catkin)ith the male and female flowers separate but produced on the same tree. It occurs throughout the Himalaya at 500–3000 m of elevation from [Pakistan](https://en.wikipedia.org/wiki/Pakistan) through [Nepal](https://en.wikipedia.org/wiki/Nepal) and [Bhutan](https://en.wikipedia.org/wiki/Bhutan) to [Yunnan](https://en.wikipedia.org/wiki/Yunnan) in southwest [China.](https://en.wikipedia.org/wiki/China) It grows best on deep volcanic loamy soils, but also grows on clay, sand, and gravel (Shaw et al., 2015). It tolerates a wide variety of soil types and grows well in very wet areas. It needs plenty of moisture in the soil and prefers streamside locations, but also grows on slopes.

Problem statement

Climate change is becoming a challenging issue for biodiversity conservation. The climatic condition is directly responsible for determining the daily activities of animals and plants so their habitat may shift under climate change in the future (Holt, 1990). The habitats of wildlife will be reduced and shifted due to climate change and combined effect of climate change and land use change in future (Aryal et al., 2016; Lamsal, Kumar, Aryal, & Atreya, 2018; Panthi, 2018). Forest and freshwater wetland ecosystems of Nepal are vulnerable and likely to be impacted by climate change shortly (Lamsal, Kumar, Atreya, & Pant, 2017). Majority of Nepalese people are experiencing the drought due to climate change from the last 25 years (CBS, 2017). If conservationists do not know about the impact of climate change on biodiversity in the future, they cannot prepare strategies to tackle the future situation to conserve biodiversity. How the future climate change will affect biodiversity is also to be answered for effective conservation planning. Furthermore, conservation of Mountain biodiversity in Himalaya is becoming challenging day by day due to its more vulnerability to climate change in this region than average (IPCC, 2007).

How the future climate change will affect the current situation of biodiversity is also to be answered. The conservationists do not know about the impact of climate change on the distribution of the threatened wildlife, high-value NTFP and major timber and fuelwood species in future so they cannot think to tackle the future situation to conserve biodiversity in the region.

Objective of the study

The overall objective of this study was to predict the potential impacts of future climate change on the biodiversity of Gandaki Province, Nepal. Specific objectives of the study are as follows:

- To predict the potential impacts of future climate change on threatened wildlife (at least three wildlife among snow leopard (*P. uncia*), common leopard (*P. pardus*), red panda (*Ailurus fulgens*), Asiatic black bear (*Ursus thibetanus*)*,* Himalayan monal/danphe (*Lophophorus impejanus*)*,* musk deer (*M. chrysogaster*), serow (*Capricornis thar*), goral (*Naemorhedus goral*)*,* etc.) of Gandaki Province of Nepal
- To predict the potential impacts of future climate change on high-value NTFP (at least three high-value NTFP among Chinese caterpillar fungus/yarshagumba (*Ophiocordyceps sinensis*)*,* jatamansi (*Nardostachys grandiflora*), kutki (*Picrorhiza scrophulariiflora*), chiraito (*S. chiraita*), ban lasun (*A. wallichii*), lokta (*D. [bholua](https://en.wikipedia.org/wiki/Daphne_bholua)*), etc.) of Gandaki Province of Nepal
- To predict the potential impacts of future climate change on major timber and fuel wood species (at least three species among sal (*S. robusta*), rani salla (*Pinus roxburghii*), gobresalla (Pinus wallichina), chilaune (*S. wallichi*), utis (*A. nepalensis*), sisau (*Dalbergia sissoo*), khayar (*Acacia catechu*), thingresalla (*Abies spectablis*), etc.) of Gandaki Province of Nepal

Research question

The research question of the study was "what is the impact of future climate change on the biodiversity of Gandaki Province, Nepal?"

Research hypothesis

The hypothesis of the study was the distribution range of threatened wildlife, high-value NTFP, and major timber and fuelwood species will be shrunk due to the impact of climate change in the future.

Limitation of the study

Biodiversity is wide ranging and normally divided into three levels: genetic diversity, species diversity and ecological/ecosystem diversity. Due to limited time and resources, the study has analyzed the impact of climate change on only nine species. If a large amount of budget was allocated, the study could explore the impact of climate change on more species. This study only

explores the impact of climate change on the species level of biodiversity only. This study used 19 bioclimatic variables as environmental variables having 1 km resolution. One km resolution is quite large for this type of small study area. Climatic variables having 30 m resolution can be better for this kind of study.

2.MATERIALS AND METHODS

Study area

Nepal is situated in the central part of the Himalaya ($26^022'$ - $30^027'$ N, $80^004'$ - $88^012'$ E), covering an area of $147,181 \text{ km}^2$ and an elevation ranges from 67 m to 8848 m. Nepal has diverse climates due to the large variation in elevation. The climate varies from the humid tropical type in the tropical lowlands in the south to alpine cold semi-desert type in the trans-Himalayan zone (Ohsawa, Shakya, & Numata, 1986). Nepal's forest ecosystems can be categorized into 10 major groups on the basis of climatic conditions: (1) tropical, (2) subtropical broad-leaved, (3) subtropical conifer, (4) lower temperate broad-leaved, (5) lower temperate mixed broad-leaved, (6) upper temperate broadleaved, (7) upper temperate mixed broadleaved, (8) temperate coniferous, (9) subalpine, and (10) alpine scrub (Stainton, 1972). Nepal has diverse geography that ranges from permanently snow and ice covered very rugged Himalayan Mountains in the north to the tropical alluvial plains in the south. Due to variation in climate and topography, Nepal is classified into five physiographic zones (i.e., Terai, Siwalik, middle Mountain, high Mountain, and Himalaya) (Barnekow Lillesø, Shrestha, Dhakal, Nayaju, & Shrestha, 2005; Shrestha, Shrestha, Chaudhary, & Chaudhary, 2010). The average annual rainfall is around $1000 - 2000$ mm, but sometimes it exceeds 3000 mm in some lower parts of the country (Ichiyanagi, Yamanaka, Murajic, & Vaidyad, 2007). Gandaki is one province out of seven provinces of Nepal. This province is situated at the center part of Nepal by covering the 11 districts: Nawalpur, Tanahun, Gorkha, Lamjung, Kaski, Syanjya, Parbat, Baglung, Myagdi, Manang, and Mustang (Figure 1). Similarly, there are only 85 local administrative bodies in the region of Pokhara, Nepal's big Pokhara municipality, 26 municipalities and 58 villages in Nepal, 18 constituencies area and 36 constituencies for the constituent assembly members for election. There is a constitutional provision of 60 members including proportional to the state assembly (MoITFE, 2018).

In the north-central part of Nepal, the Gandaki Province is spreading from Himal to Terai from north to south. The total area of this state is $21,976.34 \text{ km}^2$, i.e. 14.93% of the total area of Nepal. Near the border of India, the lowest part near the Gandak canal of Narayani River is at the height of 93 meters above sea level. This height went up gradually to Dhaulagiri is a huge iceberg with 8,167 meters, Manasalu 8,163 meters, and Annapurna first 8,091 meters. In this state, only the high Himalayan mountain range has fallen to the middle of the country. The valley is situated in

the upper part of Manang, Mustang, and Gorkha. Apart from this, the vast majority of natural areas like earthquake, mountainous, wind, soil, environment, biological diversity, is in this province (MoITFE, 2018). This province consists of five distinct geographical regions: Himalaya, high mountains, middle mountains, Shivaliks and Terai or inner Madhes.

According to the census 2068, the total number of families in this state is 5,78,21. There are 4 members of the family. Similarly, the total population of the province is 24,03,757 according to which the number of men is 10, 9080, and the number of women 13,129. Women show more 2,22,141 than the number of men. Therefore, the proportion of the gender ratio of the entire province is 83 percent. District population is the highest population in the Kaski district, and the lowest population is in Manang. Bahun, Magar, Gurung, and Visakhakarma are the leading 4 heads of the province. Apart from these Tamang, Tharu, Thakali, and Kumal are other major race of the province (MoITFE, 2018).

Around 37.1% area of the province is covered by forest. Major trees species of the province are *S. robusta,* sissoo, khair, rani salla, *S. wallichi*, katus, *A. nepalensis* , and gobre salla. The major forest management models exercised in the provinces are community forest management, collaborative forests management, and block forest management. Scientific forest management program was launched in all these forests throughout the province. Chiraito (*S. chiraita*), kutki, panchaule, lokta (*D. [bholua](https://en.wikipedia.org/wiki/Daphne_bholua)*), ban lasun (*A. wallichii*), satuwa, atis, nirmansi are major NTFPs of province (MoITFE, 2018).

Gandaki Province is rich in protected areas. Around 45.68 % area of the Gandaki Province is covered by protected areas. Annapurna Conservation Area, Manaslu Conservation Area, some part of Dhorpatan Hunting Reserve and Chitwan National Park are in this province. Annapurna Conservation area is famous for mountain trekking and unique landscape, Dhorpatan Hunting Reserve is popular for trophy hunting of blue sheep and Himalayan tahr. Similarly, Chitwan National Park is famous for rhino and tiger, and Manaslu conservation area is famous for trekking, unique landscape, and mountain biodiversity (DNPWC, 2017; MoITFE, 2018).

Figure 1: Study area (Gandaki Province)

Data collection

Collection of secondary occurrence data

The secondary occurrence data of all nine species observed from 2010 to 2019 were collected and compiled from published and unpublished research reports and reports of the government. All these secondary data were collected using Global Positioning System (GPS) receivers. Just before the data analysis, the secondary data were updated to include the available occurrence points from possible sources.

Collection of primary occurrence data

Based on the spatial distribution of the secondary occurrence data, several biodiversity experts and staffs of divisional forests offices were interviewed further to identify other potential habitats of these species for primary data collection. The field survey was carried out between February to June, 2019 in all 11 districts of the province. Due to the nature of the study and specifically the rugged mountainous characteristics of the field, data were collected by adopting a purposive sampling. In the field, the direct and indirect signs of these species (i.e., droppings) were recorded using a GPS. As a result, 724 presence points of species were collected and used for the study. To

avoid unnecessary data, only one point was collected if there are lots of species within 1-2 kilometers distance. The data were collected carefully and adopting different assumption for different species. For wildlife and NTFP, occurrence points were collected if observer encountered with any signs of presence. For the timber species, points were collected from forest type only. For *S. wallichi*, we collected occurrence points if groups of trees (n>100) were recorded. For *A. nepalensis*, we collected GPS points if we found patches of *A. nepalensis* trees (n>500). For *S. robusta*, we collected occurrence pointsif we find the block of *S. robusta* forests (area>100 ha).

Environmental variables

The environmental variables were downloaded from freely available sources (Table 1) and processed in ArcGIS (ESRI, 2017) to make appropriate format (ASCII), same spatial resolution (1 km) and equal geographical extent. Some variables with vector features (i.e., point and line) were also converted into raster format having the same resolution. The environmental variables were divided into two categories, as follows.

Bio-climatic variables

In this world, every living being is sensitive to the climate. Living beings are distributed according to their suitable climatic conditions. The bio-climatic variables are biologically meaningful variables for species distribution at global-scale (Blach-Overgaard, Balslev, Dransfield, Normand, & Svenning, 2015). Nineteen bio-climatic variables were downloaded from the WorldClim database [\(http://worldclim.org/\)](http://worldclim.org/). The WorldClim database (version 1.4) is a set of global climate layers that derived from over 4000 weather stations between 1950 and 2000, including annual time series with annual means, seasonality, and extreme or limiting temperature and precipitation data (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005). In this study, 19 bio-climatic layers with a spatial resolution of 1 km were used (Table 1).

Topographical variables

The topographical variables are major influential factors for the distribution of the animals. These variables have been widely used for species distribution modeling for 20 years (Osborne, Alonso, & Bryant, 2001). Elevation, aspect, and slope are most important topographical factors regarding the selection of habitat by living beings (Aryal et al., 2016; Lamsal et al., 2018; Shrestha & Bawa, 2014). These variables were used for the habitat modeling of the species since the beginning (Osborne et al., 2001). Digital Elevation Model (DEM) of 1 km resolution was downloaded from the USGS website [\(https://earthexplorer.usgs.gov/\)](https://earthexplorer.usgs.gov/), and slope and aspect were calculated from the DEM using ArcGIS software (ESRI, 2017).

Table 1: Environmental variables used for the modeling

Assessment of impacts of climate change on biodiversity

Present and future projections of distribution of species were modeled by the MaxEnt by using the species occurrence points and environmental variables (Phillips, Anderson, & Schapire, 2006). The MaxEnt is widely used and established functionality for projecting the future distribution of

the species under the climate change based on current species-environment relationships (Aguilar, Farnworth, & Winder, 2015; Aryal et al., 2016; Fuller, Morton, & Sarkar, 2008; A. C. Holt, Salkeld, Fritz, Tucker, & Gong, 2009; Pickles, Thornton, Feldman, Marques, & Murray, 2013; Rödder & Weinsheimer, 2009). The topographical variables were not changed within the simulation period (2070). Version 1.4 of bio-climatic variables (Hijmans et al., 2005) are available for the future projection also. Vegetation-related and other anthropogenic variables may be changed, but future projections of these variables are not available. Therefore, this study avoided anthropogenic variables for modeling and models were run using topographic variables and current bio-climatic variables and then projected onto the future climate.

The representative concentration pathways (RCP) 4.5 is the more realistic carbon emission scenario and provides the common platform for future climate change (Thomson et al., 2011). Therefore, RCP 4.5 of 2070 was used for the future prediction of the distribution of nine species. Model for Interdisciplinary Research on Climate (MIROC5) global climate model (GCM) was selected because it is the latest model and recommended for interdisciplinary research on climate changes (Watanabe et al., 2010).

The data acquisition, exploration, processing, modeling, and validation were done as described in the previous sections of the methodology part of this study. Finally, the percentage of loss or surplus and range shifting situation of all nine species due to climate change were identified by comparing the outputs of current and future models.

Only one occurrence point was used from one pixel of environmental variables to lessen the spatial autocorrelation. The 5,000 background points, 10 replicates, and 1000 maximum iteration were selected for the fine and reliable result (Barbet-Massin, Jiguet, Albert, & Thuiller, 2012). The maximum sum of sensitivity and specificity (MaxSSS) threshold is appropriate to convert the continuous probability map to binary map when only presence data are available from the field (Liu, White, & Newell, 2013). Therefore, this threshold was used to produce the distribution map of the nine species in Gandaki Province.

For habitat suitability modeling and distribution modeling of the species, a wide range of models (e.g., BIOCLIM, BRT, DOMAIN, GARP, GLM, and MaxEnt) has been developed to cover aspects as diverse as climate change, biogeography, biology, spatial ecology, and habitat management. These models have been used to predict the distribution of plants, and animals

(Gillespie & Walter, 2001; Guisan, Theurillat, & Kienast, 1998; Pearce & Ferrier, 2000; Phillips et al., 2006). These species distribution models are also using to predict the risk of landslides (Goetz, Guthrie, & Brenning, 2011), fires (Renard, Plissier, Ramesh, & Kodandapani, 2012), accidents (Maher & Summersgill, 1996) and diseases (Murray et al., 2011). Modeling the distribution of the species is crucial to understand the spatial ecology of these species and to manage them for mutual benefit for the ecosystem and human. Due to the chance of not recording the observation at the time of the researcher's field visit, the recording of the true absence data points is a challenging task during the study. Moreover, a collection of a large number of data for rare species is also another challenge in research. Therefore, the species distribution model which needs only presence data from the field is becoming more popular among the species distribution models. In this scenario, MaxEnt needs only presence data for the modeling, and it is very popular to predict the future distribution of species (Aryal et al., 2016; Lamsal et al., 2018; Panthi, 2018; Shrestha & Bawa, 2014). Therefore, this study used MaxEnt modeling tool to identify the impact of future climate change on biodiversity in Gandaki Province, Nepal.

Accuracy assessment

Assessment of the accuracy is essential to validate the models and to understand the performance of the models. Total 50 % of the species occurrence points were allocated for the training dataset, and 50 % were used as a testing /validation dataset for all models. The models were evaluated by the two methods. One method was threshold independent, and another was threshold dependent. In threshold independent method, the area under the receiver-operator curve (AUC) of models were reported (Phillips et al., 2006; Wiley, McNyset, Peterson, Robins, & Stewart, 2003). The higher the AUC, the higher the model performance was. The AUC <0.7 denotes poor model performance, 0.7–0.9 denotes moderately useful model performance, and >0.9 denotes excellent model performance (Pearce & Ferrier, 2000). Although AUC is classical and widely used model evaluation parameter, it is criticized by some researchers (Lobo, Jiménez-valverde, & Real, 2008). Therefore, threshold dependent accuracy assessment: True Skill Statistic (TSS) was also performed for the model evaluation (Merow, Smith, & Silander, 2013). TSS was calculated for all model outputs (0-9 replications), and final TSS was averaged of all 10 replications (Jiang et al., 2014).

3.RESULTS AND DISCUSSION

Impact of climate change on threatened wildlife

Common leopard (P. pardus)

The MaxEnt model was run to find the current and future (2070) distribution /suitable habitat of *P. pardus* by using 19 bio-climatic (version 1.4) and topographical variables (elevation, aspect, slope). A total of 782.5 km² of the area is identified as the current distributed area of this species (**Figure 2**), but that will be 350.2 km² in 2070 due to climate change **(Figure 3)**. The distribution of *P. pardus* will be decreased by 44.75 % in 2070 due to climate change. The threshold 0.331 was used to convert the continuous map (habitat suitability) to a binary map (suitable/unsuitable). The AUC and TSS of the model are 0.889 and 0.673, respectively.

Figure 2: Current distribution of common leopard (*P. pardus***)**

Figure 3: Distribution of common leopard (*P. pardus***) in 2070**

Musk deer (*M. chrysogaster***)**

The MaxEnt model was run to find the current and future (2070) distribution /suitable habitat of musk deer by using 19 bio-climatic (version 1.4) and topographical variables (elevation, aspect, slope). A total of $1,205.92 \text{ km}^2$ of the area is identified as the current distributed area of this species (**Figure 4**), but that will be 518.57 km² in 2070 due to climate change (**Figure 5**). The distribution of *M. chrysogaster* will be decreased remarkably in 2070 due to climate change. The threshold 0.136 was used to convert the continuous map (habitat suitability) to a binary map (suitable/unsuitable). The AUC and TSS of the model are 0.984 and 0.915, respectively.

Figure 4: Current distribution of musk deer (*M. chrysogaster***)**

Figure 5: Distribution of musk deer (*M. chrysogaster***) in 2070**

Snow leopard (*P. uncia***)**

The MaxEnt model was run to find the current and future (2070) distribution /suitable habitat of *P. uncia* by using 19 bio-climatic (version 1.4) and topographical variables (elevation, aspect, slope). A total of 2,591.66 km^2 of the area is identified as the current distributed area of this species (**Figure 6**), but that will be 622.43 km² in 2070 due to climate change (**Figure 7**). The distribution of *P. uncia* will be decreased significantly in 2070 due to climate change. The threshold 0.244 was used to convert the continuous map (habitat suitability) to a binary map (suitable/unsuitable). The AUC and TSS of the model are 0.909 and 0.723, respectively.

Figure 7: Distribution ofsnow leopard (*P. uncia***) in 2070**

Impact of climate change on high value NTFP

Ban lasun (*A. wallichii***)**

The MaxEnt model was run to find the current and future (2070) distribution /suitable habitat of *A. wallichii* by using 19 bio-climatic (version 1.4) and topographical variables (elevation, aspect, slope). A total of 4,679.47 km^2 of the area is identified as the current distributed area of this species (**Figure 8**), but that will be 1,003.81 km² in 2070 due to climate change **(Figure 9)**. The distribution of *A. wallichii* will be highly decreased in 2070 due to climate change. The threshold 0.465 was used to convert the continuous map (habitat suitability) to a binary map (suitable/unsuitable). The AUC and TSS of the model are 0.861 and 0.786, respectively.

Figure 9: Distribution of ban lasun (*A. wallichii***) in 2070**

Chiraito (*S. chiraita***)**

The MaxEnt model was run to find the current and future (2070) distribution /suitable habitat of *S. chiraita* by using 19 bio-climatic (version 1.4) and topographical variables (elevation, aspect, slope). A total of 3,848.71 km^2 of the area is identified as the current distributed area of this species (**Figure 10**), but it will be 2,554.20 km² in 2070 due to climate change **(Figure 11)**. The distribution of *S. chiraita* will be decreased in 2070 due to climate change. The threshold 0.477 was used to convert the continuous map (habitat suitability) to a binary map (suitable/unsuitable). The AUC and TSS of the model are 0.679 and 0.531, respectively.

Figure 11: Distribution of chiraito (*S. chiraita***) in 2070**

Lokta (*D. [bholua](https://en.wikipedia.org/wiki/Daphne_bholua)***)**

The MaxEnt model was run to find the current and future (2070) distribution /suitable habitat of *[D. bholua](https://en.wikipedia.org/wiki/Daphne_bholua)* by using 19 bio-climatic (version 1.4) and topographical variables (elevation, aspect, slope). A total of 5,601.85 km² of the area is identified as the current distributed area of this species (**Figure 12**), but it will be 2,207.87 km² in 2070 due to climate change **(Figure 13)**. The distribution of *[D. bholua](https://en.wikipedia.org/wiki/Daphne_bholua)* will be decreased remarkably in 2070 due to climate change. The threshold 0.363 was used to convert the continuous map (habitat suitability) to a binary map (suitable/unsuitable). The AUC and TSS of the model are 0.772 and 0.650, respectively.

Figure 12: Current distribution of lokta (*D. [bholua](https://en.wikipedia.org/wiki/Daphne_bholua)***)**

Figure 13: Distribution of lokta (*D. [bholua](https://en.wikipedia.org/wiki/Daphne_bholua)***) in 2070**

Impact of climate change on major timber and fuel woodspecies

Chilaune (*S. wallichi***)**

The MaxEnt model was run to find the current and future (2070) distribution /suitable habitat of *S. wallichi* forest by using 19 bio-climatic (version 1.4) and topographical variables (elevation, aspect, slope). A total of 5,663.26 km² of the area is identified as a current area of pure *S. wallichi* forest (**Figure 14**), but it will be 327.42 km² in 2070 due to climate change **(Figure 15)**. The area of pure *S. wallichi* forest will be decreased significantly in 2070 due to climate change. The threshold 0.216 was used to convert the continuous map (suitability) to a binary map (suitable/unsuitable). The AUC and TSS of the model are 0.885 and 0.689, respectively. Unlike the animals and NTFPs, the future distribution of pure *S. wallichi* forests will move downward. It may be due to the effect of rainfall rather than temperature.

Figure 14: Current distribution of chilaune (*S. wallichi***) forest**

Figure 15: Distribution of pure chilaune (*S. wallichi***) forest in 2070**

Sal (*S. robusta***)**

The MaxEnt model was run to find the current and future (2070) distribution /suitable habitat of pure *S. robusta* forest by using 19 bio-climatic (version 1.4) and topographical variables (elevation, aspect, slope). A total of $4,208.83 \text{ km}^2$ of the area is identified as a current area of pure *S. robusta* forest (**Figure 16**), but it will be 212.12 km² in 2070 due to climate change (**Figure**) **17)**. The area of pure *S. robusta* forest will be decreased significantly in 2070 due to climate change. Due to climate change, other species can grow inside the *S. robusta* forest and purity of *S. robusta* forest may be lost. The threshold 0.203 was used to convert the continuous map (suitability) to a binary map (suitable/unsuitable). The AUC and TSS of the model are 0.902 and 0.774, respectively. Unlike the animals and NTFPs and similar to the *S. wallichi*, the future distribution of pure *S. robusta* forests will move downward. It also may be due to the effect of rainfall rather than temperature.

Figure 16: Current distribution of pure sal (*S. robusta***) forest**

Figure 17: Distribution of pure sal (*S. robusta***) forest in 2070**

Utis (*A. nepalensis***)**

The MaxEnt model was run to find the current and future (2070) distribution /suitable habitat of pure *A. nepalensis* forest by using 19 bio-climatic (version 1.4) and topographical variables (elevation, aspect, slope). A total of 2,951.93 $km²$ of the area is identified as a current area of pure *A. nepalensis* forest (**Figure 18**), but it will be 284.18 km² in 2070 due to climate change **(Figure 19)**. The area of pure *A. nepalensis* forest will be decreased significantly in 2070 due to climate change. Due to climate change, other species can grow inside the *A. nepalensis* forest and purity of *A. nepalensis* forest may be lost. The threshold 0.199 was used to convert the continuous map (suitability) to a binary map (suitable/unsuitable). The AUC and TSS of the model are 0.934 and 0.807, respectively.

Figure 18: Current distribution of utis (*A. nepalensis* **)**

Figure 19: Distribution of utis (*A. nepalensis***) in 2070**

4.CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The distribution of threatened wildlife will be decreased remarkably due to impact of climate change in 2070. The current distribution of the *P. pardus* is concentrated around the middle part of the province and that will be shifted towards the northern sides of province. Similarly, the current distribution *M. chrysogaster* and *P. uncia* are stretched east to west at middle to northern side of the province. The future distribution of these animals will be shifted to further northern side of the province. These species might be temperature sensitive therefore they will move upward with rise in temperature.

Similarly, the distribution of the high value NTFP will be decreased due to impact of climate change in 2070. The current distributions of *A. wallichii S. chiraita D. bholua* are stretched at middle part of the province. The distribution of these species will be shifted towards northern side of the province. Similar to the threatened wildlife the high value NTFP may also vulnerable to temperature and move upward with increase in temperature.

The distribution of the major timber and fuel wood species will highly be shrunk in 2070 due to the impact of climate change. Unlike to threatened wildlife and high value NTFP, *S. robusta* and *S. wallichi* will be shifted towards the southern sides of the province. Probably these species may be precipitation sensitive and temperature resilient. The distribution of *A. nepalensis* will be shifted towards the northern and southern sides but not at middle part of the province. Probably they don't care with rise in temperature within the certain limit but they may move towards the suitable precipitation range.

Overall, the impacts of climate change lead to loss of biodiversity due to habitat shift and shrinkage. Threatened fauna and high value NTFP are less climate resilient compared to timber and fuel wood species.

Recommendations

The study analyzed the only impact of climatic change. The result might be different if other variables used. For example, if anthropogenic and vegetation related variables were used, the

current distribution of species can be different. Here other factors like edaphic factors, land use change, human management to conserve the species and adaptation, genetic mutation, and resistance to change were not calculated. Generally, this kind of study can be designed for large scale. Due to a small area of the province, some estimates may be inflated. For next, the current distribution of species should be modeled to identify the biodiversity hotspots throughout the province. National level studies are also recommended by co-coordinating with another province for better and reliable results. Moreover, further research on species resilience to climate change may further mainstream ecosystem-based adaptation and landscape-level conservation in the province. The factors affecting the distribution of species also need to be identified. The identified habitat of species should be conserved and managed as an intervention to mitigate the impact of climate change on biodiversity. The policymakers should introduce legislation and plans to tackle the serious impact of climate change. Preparation and implementation of Provincial Adaptation Program of Action (PAPA) to climate change is recommended to conserve the biodiversity. The state agencies, community, academia, and cross-cutting agencies in private sectors should coordinate to implement the programs for climate change impact mitigation and adaptation.

REFERENCES

- Acharya, K. P., Paudel, P. K., Neupane, P. R., & Kohl, M. (2016). Human-wildlife conflicts in Nepal: Patterns of human fatalities and injuries caused by large mammals. *PLoS ONE*, *11*, e0161717. https://doi.org/10.1371/journal.pone.0161717
- Adams, W. M., Aveling, R., Brockington, D., Dickson, B., Elliott, J., & Hutton, et al. (2004). Biodiversity conservation and the eradication of poverty. *Science*, *306*(5699), 1146–1149. https://doi.org/10.1126/science.1097920
- Aguilar, G. D., Farnworth, M. J., & Winder, L. (2015). Mapping the stray domestic cat (Felis catus) population in New Zealand: Species distribution modelling with a climate change scenario and implications for protected areas. *Applied Geography*, *63*, 146–154. https://doi.org/10.1016/j.apgeog.2015.06.019
- Aryal, A., Shrestha, U. B., Ji, W., Ale, S. B., Shrestha, S., Ingty, T., … Raubenheimer, D. (2016). Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. *Ecology and Evolution*, *6*(12), 4065–4075. https://doi.org/10.1002/ece3.2196
- Ashton, A. (1998). Shorea robusta. *The IUCN Red List of Threatened Species*, e.T32097A9675160. http[s://doi.org/http://dx.](http://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T32097A9675160.en)doi.org/[10.2305/IUCN.UK.1998.RLTS.T32097A9675160.en](http://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T32097A9675160.en) Copyright:
- Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: how, where and how many? *Methods in Ecology and Evolution*, *3*, 327– 338. https://doi.org/10.1111/j.2041-210X.2011.00172.x
- Barnekow Lillesø, J. P., Shrestha, T. B., Dhakal, L. P., Nayaju, R. P., & Shrestha, R. (2005). *The map of potential vegetation of Nepal: a forestry/agro-ecological/biodiversity classification system.* Hørsholm: Center for Skov, Landskab og Planlægning/Københavns Universitet. (Development and Environment; No. 2/2005).
- Barnes, M. D., Craigie, I. D., Harrison, L. B., Geldmann, J., Collen, B., Whitmee, S., … Woodley, S. (2016). Wildlife population trends in protected areas predicted by national socioeconomic metrics and body size. *Nature Communications*, *7*, 1–9. https://doi.org/10.1038/ncomms12747
- Bentley, J. M., Catterall, C. P., & Smith, G. C. (2000). Effects of fragmentation of Araucarian vine forest on small mammal communities. *Conservation Biology*, *14*(4), 1075–1087. https://doi.org/10.1046/j.1523-1739.2000.98531.x
- Bhattarai, B. R., Wright, W., Poudel, B. S., Aryal, A., Yadav, B. P., & Wagle, R. (2017). Shifting paradigms for Nepal's protected areas: history, challenges and relationships. *Journal of Mountain Science*, *14*(5), 964–979. https://doi.org/10.1007/s11629-016-3980-9
- Blach-Overgaard, A., Balslev, H., Dransfield, J., Normand, S., & Svenning, J. C. (2015). Globalchange vulnerability of a key plant resource, the African palms. *Scientific Reports*, *5*, 12611. https://doi.org/10.1038/srep12611
- CBS. (2017). *National Climate Change Impact Survey 2016. A Statistical Report*. Central Bureau of Statistics, Kathmandu, Nepal. Retrieved from cbs.gov.np
- CITES. (2017). *Appendices I, II and III*. *Convention on international trade in endangered species of wild fauna and flora*. Retrieved from https://cites.org/eng/app/appendices.php
- DNPWC. (2017). *Protected areas of Nepal*. Department of national parks and wildlife conservation, Kathmandu, Nepal. Retrieved from https://drive.google.com/file/d/0B_AvMj98dT2hbXlqR0ZKVldLaXM/view
- ESRI. (2017). *ArcGIS Desktop: Release 10.5*. *Environmental systems research Redlands, California, USA*. Retrieved from http[s://www.arcgis.com/features/index.html](http://www.arcgis.com/features/index.html)
- Fuller, T., Morton, D. P., & Sarkar, S. (2008). Incorporating uncertainty about species' potential distributions under climate change into the selection of conservation areas with a case study from the Arctic coastal plain of Alaska. *Biological Conservation*, *141*(6), 1547–1559. https://doi.org/10.1016/j.biocon.2008.03.021
- Gautam, K. H., & Devoe, N. N. (2005). Ecological and anthropogenic niches of sal (Shorea robusta Gaertn. f.) forest and prospects for multiple-product forest management - A review. *Forestry*, *79*(1), 81–101.
- Gillespie, T. W., & Walter, H. (2001). Distribution of bird species richness at a regional scale in tropical dry forest of central America. *Journal of Biogeography*, *28*, 651–662. https://doi.org/10.1046/j.1365-2699.2001.00575.x
- Goetz, J. N., Guthrie, R. H., & Brenning, A. (2011). Integrating physical and empirical landslide susceptibility models using generalized additive models. *Geomorphology*, *129*, 376–386. https://doi.org/10.1016/j.geomorph.2011.03.001
- Gon/MFSC. (2013). *Value chain desinging of Chiraito of Panchase protected forest area*.
- González-Orozco, C. E., Pollock, L. J., Thornhill, A. H., Mishler, B. D., Knerr, N., Laffan, S. W., … Gruber, B. (2016). Phylogenetic approaches reveal biodiversity threats under climate change. *Nature Climate Change*, *6*, 1110–1114. https://doi.org/10.1038/nclimate3126
- Guisan, A., Theurillat, J.-P., & Kienast, F. (1998). Predicting the potential distribution of plant species in an alpine environment. *Journal of Vegetation Science*, *9*, 65–74.

https://doi.org/10.2307/3237224

- Harris, A. (2016). Moschus chrysogaster , Alpine Musk Deer. *The IUCN Red List of Threatened Species*, e.T13895A61977139. http[s://doi.org/http://](http://dx.doi.org/10.2305/IUCN.UK.2016-)d[x.doi.org/10.](http://dx.doi.org/10.2305/IUCN.UK.2016-)23[05/IUCN.UK.2016-](http://dx.doi.org/10.2305/IUCN.UK.2016-) 1.RLTS.T13895A61977139.en
- Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, *25*(15), 1965–1978. https://doi.org/10.1002/joc.1276
- Holt, A. C., Salkeld, D. J., Fritz, C. L., Tucker, J. R., & Gong, P. (2009). Spatial analysis of plague in California : niche modeling predictions of the current distribution and potential response to climate change. *Internationl Journal of Health Geographics*, *14*, 1–14. https://doi.org/10.1186/1476-072X-8-38
- Holt, R. D. (1990). The microevolutionary consequences of climate change. *Trends in Ecology and Evolution*, *5*(9), 311–315. https://doi.org/10.1016/0169-5347(90)90088-U
- Ichiyanagi, K., Yamanaka, M. D., Murajic, Y., & Vaidyad, B. K. (2007). Precipitation in Nepal between 1987 and 1996. *International Journal of Climatology*, *27*, 1753–1762. https://doi.org/10.1002/joc
- IPCC. (2007). *Climate change 2007: The physical science basis*. (S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, … Z. Chen, Eds.). New York: Cambridge university press. https://doi.org/10.1038/446727a
- Jackson, J. K. (1987). *Manual of Afforestation in Nepal. 2nd edition*. Kathmandu, Nepal: Forest Research and Survey Centre.
- Jetz, W., Wilcove, D. S., & Dobson, A. P. (2007). Projected impacts of climate and land-use change on the global diversity of birds. *PLoS Biology*, *5*(6), e157. https://doi.org/10.1371/journal.pbio.0050157
- Jiang, Y., Wang, T., De Bie, C. A. J. M., Skidmore, A. K., Liu, X., Song, S., … Shao, X. (2014). Satellite-derived vegetation indices contribute significantly to the prediction of epiphyllous liverworts. *Ecological Indicators*, *38*, 72–80. https://doi.org/10.1016/j.ecolind.2013.10.024
- Kushwaha, S. P. S., & Nandy, S. (2012). Species diversity and community structure in sal (Shorea robusta) forests of two different rainfall regimes in West Bengal, India. *Biodiversity and Conservation*, *21*(5), 1215–1228. https://doi.org/10.1007/s10531-012-0264-8
- Lamsal, P., Kumar, L., Aryal, A., & Atreya, K. (2018). Future climate and habitat distribution of Himalayan Musk Deer (Moschus chrysogaster). *Ecological Informatics*, *44*(2017), 101–108. https://doi.org/10.1016/j.ecoinf.2018.02.004
- Lamsal, P., Kumar, L., Atreya, K., & Pant, K. P. (2017). Vulnerability and impacts of climate

change on forest and freshwater wetland ecosystems in Nepal: A review. *Ambio*, *46*, 915– 930. https://doi.org/10.1007/s13280-017-0923-9

- Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. *Journal of Biogeography*, *40*, 778–789. https://doi.org/10.1111/jbi.12058
- Lobo, J. M., Jiménez-valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. *Global Ecology and Biogeography*, *17*, 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x
- Loss, S. R., Will, T., & Marra, P. P. (2013). The impact of free-ranging domestic cats on wildlife of the United States. *Nature Communications*, *4*(1396), 1–7. https://doi.org/10.1038/ncomms2380
- Maher, M. J., & Summersgill, I. (1996). A comprehensive methodology for the fitting of predictive accident models. *Accident Analysis and Prevention*, *28*(3), 281–296. https://doi.org/10.1016/0001-4575(95)00059-3
- Maxwell, S. L., Fuller, R. A., Brooks, T. M., & Watson, J. E. M. (2016). Biodiversity: The ravages of guns, nets and bulldozers. *Nature*, *536*, 143–145. https://doi.org/10.1038/536143a
- McCarthy, T., Mallon, D., Jackson, R., Zahler, P., & McCarthy, K. (2017). *Panthera uncia*. *The IUCN Red List of Threatened Species*. https://doi.org/10.2305/IUCN.UK.2017- 2.RLTS.T22732A50664030.en
- Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter. *Ecography*, *36*(10), 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
- MoITFE. (2018). *Status paper*. Ministry of Industry, Tourism, Forest and Environment, Gandaki Province, Pokhara.
- Murray, K. A., Retallick, R. W. R., Puschendorf, R., Skerratt, L. F., Rosauer, D., McCallum, H. I., … VanDerWal, J. (2011). Assessing spatial patterns of disease risk to biodiversity: Implications for the management of the amphibian pathogen, Batrachochytrium dendrobatidis. *Journal of Applied Ecology*, *48*, 163–173. https://doi.org/10.1111/j.1365- 2664.2010.01890.x
- Ohsawa, M., Shakya, P. R., & Numata, M. (1986). Distribution and succession of west Himalayan forest types on the eastern part of the Nepal Himalaya. *Mountain Research & Development*, *6*(2), 143–157. https://doi.org/10.2307/3673268
- Osborne, P. E., Alonso, J. C., & Bryant, R. G. (2001). Modelling landscape-scale habitat use using GIS and remote sensing: A case study with great bustards. *Journal of Applied Ecology*, *38*, 458–

471. https://doi.org/10.1046/j.1365-2664.2001.00604.x

- Panthi, S. (2018). *Predicting current and future habitat suitability for red pandas in Nepal*. MSc thesis. University of Twente,faculty of geoinformation and earth observation, Enschede, Netherlands.
- Pearce, J., & Ferrier, S. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. *Ecological Modelling*, *133*, 225–245. https://doi.org/10.1016/S0304-3800(00)00322-7
- Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. *Ecological Modelling*, *190*, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
- Pickles, R. S. A., Thornton, D., Feldman, R., Marques, A., & Murray, D. L. (2013). Predicting shifts in parasite distribution with climate change: A multitrophic level approach. *Global Change Biology*, *19*(9), 2645–2654. https://doi.org/10.1111/gcb.12255
- Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., … Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. *Science*, *344*(6187), 1246752. https://doi.org/10.1126/science.1246752
- Renard, Q., lissier, R., Ramesh, B. R., & Kodandapani, N. (2012). Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. *International Journal of Wildland Fire*, *21*, 368–379. https://doi.org/10.1071/WF10109
- Rödder, D., & Weinsheimer, F. (2009). Will future anthropogenic climate change increase the potential distribution of the alien invasive Cuban treefrog (Anura: Hylidae)? *Journal of Natural History*, *43*(19–20), 1207–1217. https://doi.org/10.1080/00222930902783752
- Shaw, K., Roy, S., & Wilson, B. (2015). Alnus nepalensis. *The IUCN Red List of Threatened Species*, e.T194649A2355690. http[s://doi.org/http://dx.doi.o](http://dx.doi.org/10.2305/IUCN.UK.2014-)rg/10.2[305/IUCN.UK.2014-](http://dx.doi.org/10.2305/IUCN.UK.2014-) 3.RLTS.T194649A2355690.en Copyright:
- Shrestha, U. B., & Bawa, K. S. (2014). Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal Himalaya. *PLoS ONE*, *9*(9), e106405. https://doi.org/10.1371/journal.pone.0106405
- Shrestha, U. B., Shrestha, S., Chaudhary, P., & Chaudhary, R. P. (2010). How representative is the protected areas system of Nepal? *Mountain Research and Development*, *30*(3), 282–294. https://doi.org/10.1659/MRD-JOURNAL-D-10-00019.1
- Simberloff, D. (1998). Flagships, umbrellas, and keystones: Is single-species management passe in the landscape era? *Biological Conservation*, *83*(3), 247–257. https://doi.org/10.1016/S0006- 3207(97)00081-5
- Stein, A. B., Athreya, V., Gerngross, P., Balme, G., Henschel, P., Karanth, U., … Ghoddousi, A. (2016). Errata version. *The IUCN Red List of Threatened Species*, *8235*, e.T15954A102421779. http[s://doi.org/http://dx.](http://dx.doi.org/10.2305/IUCN.UK.2016-)doi.org/[10.2305/IUCN.UK.2016-](http://dx.doi.org/10.2305/IUCN.UK.2016-) 1.RLTS.T15954A50659089.en [see
- Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., … Edmonds, J. A. (2011). RCP4.5: A pathway for stabilization of radiative forcing by 2100. *Climatic Change*, *109*(1), 77–94. https://doi.org/10.1007/s10584-011-0151-4
- Tittensor, D. P., Walpole, M., Hill, S. L. L., Boyce, D. G., Britten, G. L., Burgess, N. D., … Cheung, W. W. L. (2014). A mid-term analysis of progress toward international biodiversity targets. *Science*, *346*(6206), 241–244. https://doi.org/10.1126/science.1257484
- Tiwari, U., Adams, S. J., Begum, S. N., Krishnamurthy, K. V, Ravikumar, K., & Padma, V. (2014). Pharmacognostic studies on two Himalayan species of traditional medicinal value : Allium wallichii and Allium stracheyi. *Notulae Scientia Biologicae*, *6*(2), 149–154. https://doi.org/10.15835/nsb.6.2.9308
- Uddin, K., Chaudhary, S., Chettri, N., Kotru, R., Murthy, M., Chaudhary, R. P., … Gautam, S. K. (2015). The changing land cover and fragmenting forest on the roof of the world: A case study in Nepal's Kailash sacred landscape. *Landscape and Urban Planning*, *141*, 1–10. https://doi.org/10.1016/j.landurbplan.2015.04.003
- Wang, T., Ye, X., Skidmore, A. K., & Toxopeus, A. G. (2010). Characterizing the spatial distribution of giant pandas (Ailuropoda melanoleuca) in fragmented forest landscapes. *Journal of Biogeography*, *37*(5), 865–878. https://doi.org/10.1111/j.1365-2699.2009.02259.x
- Watanabe, M., Suzuki, T., O'Ishi, R., Komuro, Y., Watanabe, S., Emori, S., … Kimoto, M. (2010). Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. *Journal of Climate*, *23*, 6312–6335. https://doi.org/10.1175/2010JCLI3679.1
- Wiley, E. O., McNyset, K. M., Peterson, A. T., Robins, C. R., & Stewart, A. M. (2003). Niche modeling and geographic range predictions in the marine environment using a machinelearning algorithm. *Oceanography*, *16*(3), 120–127. http[s://doi.org/http://dx.](http://dx.doi.org/10.5670/oceanog.2003.42)doi.org/[10.5670/oceanog.2003.42](http://dx.doi.org/10.5670/oceanog.2003.42)
- Williemas, P., Burgess, N., & Rahbeck, C. (2000). Flagship species, ecological complementary and conserving the diversity of mammals and bird in sub-Sahara Africa. *Animal Conservation*, *3*, 249– 260.
- Wilsey, B. J. B., & Potvin, C. (2000). Biodiversity and ecosystem functioning: Importance of species evenness in an old field. *Ecology*, *81*(4), 887–892. https://doi.org/10.1890/0012- 9658(2000)081[0887:BAEFIO]2.0.CO;2

Appendix

I. Details of accuracy assessment of nine species

Common leopard (*P. pardus***)**

Musk deer (*Moschus chrysogaster***)**

Snow leopard (*P. uncia***)**

Ban lasun (*A. wallichii***)**

Chiraito (*S. chiraita***)**

Lokta (*D. [bholua](https://en.wikipedia.org/wiki/Daphne_bholua)***)**

Chilaune (*S. wallichi***)**

Sal (*S.robusta***)**

Utis (*A. nepalensis* **)**

II. Data used for modeling

