Biodiversity Hotspot Mapping in Gandaki Province

Provincial Government Ministry of Industry, Tourism, Forest and Environment Forest Research and Training Centre Gandaki Province, Pokhara July 2, 2020

© Forest Research and Training Center, Gandaki Province, 2020

Any reproduction of this publication in full or in part should mention the title and credit FRTC, GandakiProvince.

Citation:

FRTC. 2020. Biodiversity Hotspot Mapping in Gandaki Province, Forest Researchand Training Center (FRTC), Ministry of Industry, Tourism, Forest and Environment, Gandaki Province, Pokhara.

Contact Address:

Forest Research and Training Centre Tel: 977 061456974

Email: <u>frtc.gandaki@gmail.com</u> Website: frtc.gandaki.gov.np

Acknowledgement

The objectives of this study were to identify and assess the floral and faunal species those are endangered and near to extinction, analyze the distribution and coverage of these floral and faunal species and prepare provincial level biodiversity hotspots maps in Gandaki Province. Forest Research and Training Centre, Pokhara firstly would like to thank Smart Private Limited, Kathmandu, for their crucial role in completing this research project. The FRTC also express sincere gratitude to all the representatives of Forest Directorate, Division Forest Office Kaski, Forest Seed laboratory and Storage Centre, Kaski for their valuable guidance, feedback, comments during the Provincial level workshop which were crucial to shape this report. Moreover, FRTC also like to thank Mrs. Manju KC, Assistant Research Officer, for her contribution and support to complete this study. Further, FRTC also thanks Mr. Ghanendra Bahadur Khanal (Assistant Training Officer), Mrs. Anshu Dhakal (Officer), Chungla Sherpa (Ranger) for their support. In addition, special thanks go to local communities and all the respondents for providing their insights and meaningful information to the study team.

Thank You.

Khally.

Rajesh Malla Director Forest Research and Training Centre Pokhara, Gandaki Province

Table of Content

1.	Intro	duction	1
	1.1.	Background	1
	1.1.1	. Biodiversity	1
	1.2.	Problem statement and rationale	7
	1.3.	The objective of the study	8
	1.4.	Scope and coverage of the study	8
	1.5.	Research hypotheses	8
	1.6.	Limitation of the study	9
2.	Mate	erials and methods	9
	2.1.	Study area	9
	2.2.	Data collection	12
	2.2.1	. Sampling/primary data collection	12
	2.2.2	. Desk review/ secondary data collection	13
	2.2.3	. Environmental variables	14
	2.3.	Distribution modeling of species	15
	2.4.	Accuracy assessment of the modeling	16
	2.5.	Biodiversity hot spot mapping	16
3.	Resu	lts and discussion	18
	3.1.	Habitat of Asiatic black bear	18
	3.2.	Habitat of Common leopard	19
	3.3.	Habitat of Musk deer	19
	3.4.	Habitat of Snow leopard	20
	3.5.	Habitat of medicinal plants	21
	3.6.	Vegetation rich area	22
	3.7.	Enhanced vegetation index rich area	23
	3.8.	Accuracy of the modeling	24
	3.9.	Biodiversity hotspot of Gandaki Province	27
4.	Conc	lusions	30
5.	Reco	mmendations	32
Ref	erence	es	33
An	pendic	res	40

Table of Figures

Figure 1: Study area (Gandaki Province)	11
Figure 2: Landuse of Gandaki Province	
Figure 3: Data collection grid	
Figure 4: Habitat of Asiatic black bear	
Figure 5: Habitat of Common leopard	19
Figure 6: Habitat of Musk deer	
Figure 7: Habitat of Snow leopard	21
Figure 8: Habitat of medicinal plants	
Figure 9: Vegetation rich area	23
Figure 10: EVI rich area	
Figure 11: Biodiversity hotspot in Gandaki Province	

Abstract

Biodiversity is the natural bank of biological resources. Areas with rich biodiversity and of great importance are generally known as Biodiversity hotspots. The biodiversity hotspot mapping is a challenging task for the world's biologists. Although it is crucial for conservation-related decision making, information related to the biodiversity hotspot was completely lacking in Gandaki Province. In this scenario, this study was designed to map the biodiversity hotspots in Gandaki Province. The study has identified the distribution of threatened fauna and medicinal plants as well as vegetation rich area. Finally, the habitat of a snow leopard or common leopard and habitat of Asiatic black bear, musk deer, medicinal plant and forest or shrubland or grassland and EVI more than 0 was identified as biodiversity hotspots in Gandaki Province. Habitats of Asiatic black bear, common leopard, musk deer, snow leopard and medicinal plants were found to be 5,528km², 3,961km², 1,179 km², 2,164 km² and 3,731 km² respectively. Forest areas of the middle Mountain region of Baglung, Myagdi, Parbat, Kaski, Lamjung and Gorkha district are good habitat for Asiatic black bear. The whole area of *Parbat*, *Syangja* and *Tanahun*as well as the southern part of Baglung, Myagdi, Kaski, Lamjung and Gorkha are the suitable habitat of common leopard. Dhorpatan Hunting Reserve, Annapurna Conservation Area and Manaslu Conservation area are identified as the suitable habitat of musk deer, snow leopard and medicinal plants. The accuracy of the habitat model of Asiatic black bear, common leopard, musk deer, snow leopard was found to be (for example AUC > 0.8) which shows robustness of the model. A total of 198 km² area was identified as a biodiversity hotspot in Gandaki Province. Most of the patches of the hotspot are inside the protected areas. Hotspots of the western part fall inside the Dhorpatan Hunting Reserve. All hotspot patches of Mustang and Kaski, as well as majority patches of Myagdi, Manang and Lamjung are inside the Annapurna Conservation Area. The majority of hotspot patches of the Gorkha district are inside the Manaslu Conservation Area. Only some hotspot patches of Baglung, Myagdi, Parbat, Lamjung, Manang and Gorkha are outside the protected areas.

1. INTRODUCTION

1.1. Background

1.1.1. Biodiversity

Biodiversity is the diversity among living beings. It can be divided into three levels: (1) Ecosystem diversity: Diversity in an ecosystem (forest ecosystem, pond ecosystem...) (2) Species diversity: Diversity in species (red panda snow leopard, black bear) and (3) Genetic diversity: Diversity in gene level. The number of species of plants, animals, and microorganisms, the enormous diversity of genes in these species, the different ecosystems on the planet, such as deserts, rainforests and coral reefs are all part of biologically diverse earth. The variety of life on earth, its biological diversity is commonly referred to as biodiversity.For rich biodiversity, a variety of topographical and climatic situations, more variety of living beings and less or right about human intervention are necessary(Global Issues, 2020).

Biodiversity boosts ecosystem productivity where each species, no matter how small, all have an important role to play. For example, a larger number of plant species means a greater variety of crops. Greater species diversity ensures natural sustainability for all life forms.Biodiversity plays a crucial role in human nutrition through its influence on world food production, as it ensures the sustainable productivity of soils and provides the genetic resources for all crops, livestock, and marine species harvested for food(Global Issues, 2020). The most obvious reason for conservation is to protect wildlife and promote biodiversity. Protecting wildlife and preserving it for future generations also means that the animals we love don't become a distant memory. And we can maintain a healthy and functional ecosystem.

Biodiversity loss affects economic systems and human society. This lack of biodiversity among crops threatens food security, because varieties may be vulnerable to disease and pests, invasive species, and climate change(Lamsal et al., 2017). At least 40 percent of the world's economy and 80 percent of the needs of the poor are derived from biological resources. Besides, the richer the diversity of life, the greater the opportunity for medical discoveries, economic development, and adaptive responses to such new challenges as climate change (Global Issues, 2020). Appropriate conservation and sustainable development strategies attempt to recognize this as being integral to

any approach to preserving biodiversity. Almost all cultures have their roots in our biological diversity in some way or form. Declining biodiversity is therefore a concern for many reasons: such as the low economic condition of local people, low level of awareness, construction of physical superstructure and infrastructure and natural as well as human-induced calamities.

1.1.2. Introduction of biodiversity hotspot

Species in tropical regions can account for two-thirds of all known species on earth. Many areas within the tropical zones are considered biodiversity hotspots and are home to the world's most rare and endangered species(Merritt et al., 2019). The areas where can be found the highest concentrations of endemic species and that also face the highest loss of natural habitats are called biodiversity hotspots (Hrdina and Romportl, 2017). With the enormous number of species that exist on Earth, it is remarkable that the distribution of these species is so highly concentrated in specific areas. Species richness, the total number of species found in an area, is not evenly distributed around the globe: two-thirds of all known species occur in tropical areas, especially in tropical forests, even though the causes of such uneven distribution are still a matter of debate(Merritt et al., 2019). To prioritize the areas that should be protected, scientists look for areas that are home to a large number of species, especially those species that are under threat of extinction or that are currently being destroyed at a fast pace. These areas that are particularly important for biodiversity conservation are called biodiversity hotspots. Two things are crucial when determining that a place is a biodiversity hotspot: (i) the number of different species there; and (ii) whether species in that area are endangered or currently being destroyed.

According to the criteria developed by Myers et al. (2000), To qualify as a biodiversity hotspot, an area must meet two strict criteria: (1) Contain at least 1,500 species of vascular plants found nowhere else on Earth (known as "endemic" species). (2) Have lost at least 70 percent of its primary native vegetation(Conservation International, 2020). Many of the biodiversity hotspots exceed the two criteria. For example, both the Sundaland Hotspot in Southeast Asia and the Tropical Andes Hotspot in South America has about 15,000 endemic plant species. The loss of vegetation in some hotspots has reached a startling 95 percent. There are currently 36 recognized biodiversity hotspots. These are Earth's most biologically rich—yet threatened—terrestrial regions (CEPF, 2020).Biodiversity hotspots make up less than 3 percent of Earth's land surface

and refer to regions that are both rich with life and at high risk for destruction (National Geographic Society, 2020).

Biodiversity hotspots are regions that are both biologically fertile (rich distribution of plants and animals) and highly threatened. In other words, such biogeographic regions are very productive and are constantly exposed to threats of destruction which warrant the need for them to be protected. Examples of biodiversity hotspots are forest habitats as they constantly face destruction and degradation due to illegal logging, pollution and deforestation(Conserve Energy Future, 2020). The 36 biodiversity hotspots are home to around 2 billion people, including some of the world's poorest, many of whom rely directly on healthy ecosystems for their livelihood and well-being.

As many as 35% of all species in four vertebrate and 44% of vascular plants are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth (Myers et al., 2000). Regionally, mountain regions are rich in biodiversity hotspots due to moderate environmental variables. Distribution of endemic richness (i.e., number of endemic taxa) along was high at mid-elevations in Iran (Noroozi et al., 2018).

1.1.2.1. Importance of biodiversity hotspot

The hotspots provide crucial ecosystem services for human life, such as the provision of clean water, pollination and climate regulation. These remarkable regions also hold some of the highest human population densities on the planet, but the relationship between people and biodiversity is not simply one where more people lead to greater impacts on biodiversity. Much of human-biodiversity impacts lay not in human density but rather in human activity. Conservation in the hotspots promotes the sustainable management of these essential natural resources and supports economic growth, which also reduces drivers of violent conflict (CEPF, 2020). Freshwater diversity was largely derived from a few ancient colonization, coupled with high diversification rates (Miller et al., 2018).

1.1.2.2. Biodiversity hotspot mapping

Biodiversity hotspot mapping is a challenging task. Bazelet et al. (2016) mapped the biodiversity hotspot using a 1° fishnet gridand delineated katydid hotspots in two ways:(1) count-based: grid cells in the top 10% of the total, endemic, threatened and/or sensitive species richness (2) score-based: grid cells with a mean value in the top 10% on a scoring system which scored each species based on its IUCN Red List threat status, distribution, mobility and trophic level.Habitat maps of living beings are also useful for the biodiversity hotspot mapping (Mckerrow et al., 2018).

Although hotspot can't represent all biodiversity (Balletto et al., 2010), identification and conservation of biodiversity hotspot is the best idea to conserve the biodiversity with limited resources. Biodiversity hotspot mapping may be an artifact(Carolan, 2009), and cold spots are also important for conservation (Marchese, 2015), it can provide valuable information for conservation priorities. Identification and assessment of the biodiversity hotspot are crucial to conserving biodiversity in the province. Biodiversity hotspot mapping is a way to know the existing condition of the valuable biodiversity that exists throughout the province. Furthermore, the spatial information and mapping of biodiversity hotspot would guide for formulating a new plan and policy for sustainable use of resources, conservation of biodiversity and associated issues. In this scenario, the best way of conservation of the biodiversity of Gandaki Province is the identification of biodiversity hotspots and the concentration of resources at these hotspots for effective and efficient conservation of biodiversity of Gandaki Province. Here we defined biodiversity hotspot as a habitat of a snow leopard or common leopard and habitat of Asiatic black bear, musk deer, medicinal plant and forest or shrubland or grassland and EVI more than 0.

Asiatic black bear (Ursusthibetanus)

Asiatic blackbear (*U.thibetanus*)face several threats due to human activity. The species is listedas "vulnerable"by the IUCN (Garshelis, D. & Steinmetz, 2016), due towidespread illegal killing, trade in bear parts, and habitat loss (Ahmadzadeh et al., 2008; Awan et al., 2016; Escobar et al., 2015). The species also included in Appendix I of the Convention on International Tradein Endangered Species of Wild Fauna and Flora (CITES, 2019). Better understanding the habitat of

Asiaticblack bear in Nepal will serve to help identify important natural habitat and conserve this species and associated habitat.

Common leopard (Pantherapardus)

The common leopard (*P. pardus*) is a leopard subspecies widely distributed on the Indian subcontinent. The species *P. pardus* is listed as vulnerable on the International Union for Conservation of Nature (IUCN) Red List because populations have declined following habitat loss and fragmentation, poaching for the illegal trade of skins and body parts, and persecution due to conflict situations (Stein et al., 2016). The *P. pardus* is a versatile, opportunistic hunter, and has a very broad diet. It can take large prey due to its massive skull and powerful jaw muscles. The number of *P. pardus* in the country has significantly gone down in the last few years due to a shortage of food and a lack of safe habitat. A report published by IUCN in 2012 showed Nepal had a total of 1,000 *P. pardus*. The report had also stated that the number of *P. pardus* was decreasing every year (Stein et al., 2016).

Musk deer (Moschuschrysogaster)

Musk deer (*M. chrysogaster*), small compact deer, family Cervidae (order Artiodactyla) is a solitary shy animal. The *M. chrysogaster* lives in mountainous regions from Siberia to the Himalayas. It has large ears, a very short tail, no antlers, and, unlike all other deer, a gall bladder. The *M. chrysogaster* is grayish brown, with long coarse, brittle hair, and stands 50–60 cm (20–24 inches) at the shoulder, slightly higher at the rump. The male has long upper canine teeth that project downward from the mouth as tusks and has a musk-producing organ, the musk pod, on its abdomen. The musk from that organ is valued for use in perfumes and soaps. The *M. chrysogaster* is listed as endangered in IUCN red data list and Appendix I of CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora) (CITES, 2017; Harris, 2016).

Snow leopard(*Pantherauncia*)

The snow leopard (*P. uncia*), also known as the ounce, is a large cat native to the mountain ranges of Central and Southern Asia. It is listed as vulnerable on the IUCN Red List because the global population is estimated to number less than 10,000 mature individuals and decline about 10% until 2040. It is threatened by poaching and habitat destruction following infrastructural developments. It inhabits alpine and subalpine zones at elevations from 3,000 to 4,500 m (McCarthy et al., 2017).

Medicinal Plants

This study used other species such as GuchchiChyau (Morchellaesculenta), Kurilo (Asparagus officinalis), LauthSalla (Taxusbaccta), Nirmasi (Delphinium denudatum), Okhar (Juglansregia), Paakhanved (Bergenia ciliate), Panchaule (Dactylorhizahatageria), Satuwa (Paris polyphylla), Sungadhwal (Valerianajatamansi) and Timur (Zanthoxylumpiperitum) as medicinal plants. Himalayan onion/ban lasun (A. wallichii) is a perennial herb with numerous purple flowers, borne in a lax rounded umbel 5-7 cm across, on top of a leafless 3-angled flowering-stem; 1-3 ft. It is a high-value Non-Timber Forest Product (NTFP). Petals are broadly linear blunt, spreading in a star, at length reflexed, longer than the purple stamens and ovary. Leaves are many, spearshaped, flat and keeled, up to 2 cm broad, often almost as long as the flowering stem. The bulb is solitary or clustered, cylindrical; tunic yellowish-brown, fibrous. Himalayan onion is found in the Himalayas, from Pakistan to southwest China, at altitudes of 2800-4300 m. Its bulb is used to treat asthma, bronchitis, and bleeding during cough, especially during tuberculosis. A paste of the bulb is applied to check bleeding from wounds and to treat pimples (Tiwari et al., 2014). Chiraito (S. chiraita) has been used by Nepali locals since the old days, and this is one of the traditional medicinal herbs used by the people of Nepal. This herb is mainly used for the treatment of stomach aches, constipation, excess urination, parasites cure, and malaria treatment. The S. chiraita is a popular medicinal herb found in forests and open slopes of the Himalayan region of 1600-2500 m above sea level. The plant of S. chiraita is made of an ingredient called "chiratin" which is bitter. The illegal harvesting of this herb is banned by the government of Nepal. The S. chiraita herbs are legally farmed within the community forests and subsidiary lands on eastern hilly regions of Nepal (GoN/MFSC, 2013).

1.2. Problem statement and rationale

Biodiversity is an important economic asset. Humans depend on biodiversity in myriad ways, yet species are being rapidly lost due to anthropogenic activities (Gascon et al., 2015). For example, biodiversity helps to improve the productivity of ecosystems (Wilsey and Potvin, 2000). Unfortunately, the global biodiversity resource has been declining continuously over the last several decades mainly due to increasing anthropogenic interferences (Tittensor et al., 2014). The species extinction rate is about 1000 times more than the likely background rate, and future rates are poised to increase (Pimm et al., 2014). Over-exploitation of the biological resources and agricultural activities such as crop production and livestock farming are identified as major causes of global biodiversity loss (Maxwell et al., 2016). In other words for wildlife conservation, habitat fragmentation (Bentley et al., 2000) and the impact of domesticated animals are major challenges (Loss et al., 2013). Furthermore, climate change is becoming a severe threat to biodiversity (González-Orozco et al., 2016). Often species react to climate change by shifting the distribution to follow changing the environmental situation, by adapting to changing conditions in location, or, if unable to do either, by remaining in isolated pockets of the unchanged environment or, more likely, becoming extinct (Holt, 1990). Similar to climate change, land-use change is also becoming an emerging threat to conserving biodiversity and may lead to greater species loss in tropics (Jetz et al., 2007). The conservation of biological resources and their habitats are directly influenced by the socio-political situation of the country (Barnes et al., 2016). Less developed countries are focusing on the production of food and the management of shelter for their people. Due to the poverty (Adams et al., 2004), human-wildlife conflict (Acharya et al., 2016), over-exploitation of biological resources and tourism pressure on protected areas (Bhattarai et al., 2017), people's dependency on forests and consequent deforestation and forest fragmentation (Uddin et al., 2015) developing countries are facing more difficulties for biodiversity conservation. The habitats of wildlife will be reduced and shifted due to climate change and combined effect of climate change and land-use change in the future (Aryal et al., 2016; Lamsal et al., 2018; Panthi, 2018). Forest and freshwater wetland ecosystems of Nepal are vulnerable and likely to be impacted by climate change shortly (Lamsal et al., 2017).

The top ten conservation issues of this area are (i) degradation of wildlife habitat due to deforestation and degradation of wetland and rangeland; (ii) poaching and trade of wildlife

including protected species due to absence/inadequate effective control mechanism; (iii) illegal harvest of forest resources, especially Non-Timber Forest Products (NTFPs) (iv) adverse effects due to alien invasive plant species; (v) forest fires, floods and landslides; (vi) diversion of rivers or construction of dams; (vii) crop and livestock depredation by wildlife, and human injuries or casualties; (viii) conversion of forest/forest land for non-forestry uses; (ix) inadequate awareness and motivation to protect biodiversity, and (x) weak institutional capacity (WWF, 2013).

Managers have limited resources but they have to conserve the large area. Identification of conservation priorities is imperative for decision making to allocate the resources. Although it is crucial for conservation-related decision making, information related to the biodiversity hotspot was completely lacking in Gandaki Province.

1.3. The objective of the study

The overall objective of this study was to identify and map the biodiversity hotspot of Gandaki Province, Nepal. Specific objectives of the study are as follows:

- To identify and assess floral and faunal species those are endangered and near to extinction.
- To analyze the distribution and coverage of these floral and faunal species
- To prepare provincial level biodiversity hotspot maps

1.4. Scope and coverage of the study

- The study is confined to the forest area of Gandaki Province.
- The study is limited to the mapping of floral and faunal species important for biodiversity hotspots.

1.5. Research hypotheses

Most of the biodiversity hotspots are located at forests of the high mountain region of Gandaki Province, Nepal.

1.6. Limitation of the study

Due to the Covid-19 the field work was disturbed partially. Budget limitation is another problem. It is very hard to cover the field work of whole province within this limit of budget. It is not easy to visit whole province for data collection within this amount of money. Filed was very large and difficult to visit. Some predefined / pre allocated sample points were not reachable. In these cases, samples were collected from the nearest reachable areas.

2. MATERIALS AND METHODS

2.1. Study area

Gandaki is one province out of seven provinces of Nepal. This province is situated in the center part of Nepal by covering the 11 districts: Nawalpur, Tanahun, Gorkha, Lamjung, Kaski,

Syanjya, Parbat, Baglung, Myagdi, Manang, and Mustang (Figure 1). Similarly, there are only 85 local administrative bodies in the region of Pokhara, 1 metropolitan city, 26 municipalities and 58 villages.(MoITFE, 2018).

In the north-central part of Nepal, the Gandaki Province is spreading from Himal to Terai from north to south. The total area of this state is 21,976.34 km², i.e. 14.93% of the total area of Nepal. Near the border of India, the lowest part near the Gandak canal of Narayani River is at the height of 93 meters above sea level. This height went up gradually to Dhaulagiri is a huge iceberg with 8,167 meters, Manasalu 8,163 meters, and Annapurna first 8,091 meters. In this state, only the high Himalayan mountain range has fallen to the middle of the country. The valley is situated in the upper part of Manang, Mustang, and Gorkha. (MoITFE, 2018). This province consists of five distinct geographical regions: Himalaya, high mountains, middle mountains, Shivaliks and Terai or inner Madhes.

Around 37.1% area of the province is covered by forest. Major trees species of the province are Shorea. robusta, Dalbergiasissoo, Acacia catechu Pinusroxberghii, P. wallichianaSchima. wallichi, CastenopsisindicaAlnusnepalensis, and Taxusbaccata. The major forest management models exercised in the provinces are community forest management, collaborative forest management, and block forest management. The scientific forest management program was launched in all these forests throughout the province. GuchchiChyau (Morchellaesculenta), Kurilo (Asparagus officinalis), LauthSalla (Taxusbaccta), Nirmasi (Delphinium denudatum), Okhar (Juglansregia), Paakhanved (Bergenia ciliate), Panchaule (Dactylorhizahatageria), Satuwa (Paris Sungadhwal (Valerianajatamansi) and Timur polyphylla), (Zanthoxylumpiperitum) are major NTFPs of a province (MoITFE, 2018).

Gandaki Province is rich in protected areas. Around 45.68 % area of the Gandaki Province is covered by protected areas. Annapurna Conservation Area, Manaslu Conservation Area, some parts of Dhorpatan Hunting Reserve and Chitwan National Park are located in this province. Annapurna Conservation area is famous for mountain trekking and unique landscape, Dhorpatan Hunting Reserve is popular for trophy hunting of blue sheep and Himalayan tahr. Similarly, Chitwan National Park is famous for rhino and tiger, and the Manaslu conservation area is famous for trekking, unique landscape, and mountain biodiversity (DNPWC, 2017; MoITFE, 2018). Moreover, The diversity of orchids is high, especially in the Panchase Hills(WWF, 2013). Being situated at the divide of the Eastern and WesternHimalaya, the Kali Gandaki gorge is a recognizedcorridor for birds to migrate(WWF, 2013)

Figure 1: Study area (Gandaki Province)

Most of the area of the province is covered by forest and agricultural land. Major land-use types of the province are Needle leaved forest, Broad-leaved forest, Shrubland, Grassland, Agricultural land, Built-up area, Bare area, Lake, River and Snow/Glacier (Figure 2 Source: ICIMOD)(Uddin et al., 2015).

Figure 2: Landuse of Gandaki Province

2.2. Data collection

2.2.1. Sampling/primary data collection

The collection of biodiversity data is a prerequisite for the biodiversity hotspot mapping (Trizzino et al., 2014). The field survey was conducted throughout the Gandaki Province to collect the primary data for the study. The presence of wildlife wasrecorded based on direct sight of the particular species or its indirect signs (scats, hairs, and footprints) in the field.. Similarly, the presence of the plant species was recorded based on the direct sight of the plant either live ordead form.

For systematic sampling, the vegetated area (forest, shrubland and grasslands) were identified by using the land cover map. Biodiversity rich potential areas were identified through literature

review and consultations with experts. Systematic sampling method was adopted to find sample points for ground data collection. A grid of 10 km X 10 kmwas applied on land cover types (**Figure 3**). In each grid, at least one transect having 100 m length and 10 m width was allocated for data collection.

Figure 3: Data collection grid

2.2.2. Desk review/ secondary data collection

The occurrence points of species were compiled from other researchers, research reports and published as well as unpublished reports of the government of Nepal (Nepal biodiversity strategy (2002), National biodiversity strategy and action plan (2016-2020), CHAL strategy and action plan (2016-2025), Forest Resource assessment reports andForest Policy (2075). Before the data analysis, the secondary data were updated to include the available occurrence points from other possible sources.

2.2.3. Environmental variables

2.2.3.1. Topographical variables

Digital Elevation Model (DEM) data of 30 m resolution was downloaded from the United States Geological Survey website (https://earthexplorer.usgs.gov/), and the slope was computed from the DEM using ArcGIS software (ESRI, 2017). Shapefiles of water sources were downloaded from Geofabrik website (<u>https://www.geofabrik.de/data/shapefiles.html</u>) and converted to distance raster file using ArcGIS (ESRI, 2017). Elevation was used as a proxy of temperature due to the unavailability of high-resolution climatic variables.

2.2.3.2. Vegetation-related variables

Herbivores are depended on vegetation-related variables (Andersen et al., 2000) and carnivores are depending on herbivoresso the inclusion of vegetation-related variables to predict suitable habitat for this species a prerequisite for robust habitat modeling.

For the variable 'forest cover' we used data prepared by Hansen et al. (2013)which were downloaded from the Global Forest Change (GFC) website. This study used Enhanced Vegetation Index (EVI) time series data for 2018 and 2019, from images obtained by Landsat 8. The data were analyzed by the help of Google Earth Engine.

2.2.3.3. Anthropogenic variables

Human activities have been identified as a threat to endangered animals and influence the species distribution (Choudhury et al., 2008; DNPWC, 2012). We therefore, incorporated anthropogenic variables into our model. Anthropogenic variables were the distance to human paths (used by human and animal) and roads (used by vehicle), distance to settlements, and land use. Location of paths and roads was obtained from shapefiles available on the Geofabrik website (https://www.geofabrik.de/data/shapefiles.html). Settlement locations were obtained from the Department of Survey, Nepal. Distance raster files of paths, roads, and settlements were created using ArcGIS (ESRI, 2017). Land cover and land use (LULC) data were downloaded from the International Centre for Integrated Mountain Development website (ICIMOD; http://www.icimod.org) (Uddin et al., 2015) and incorporated into the model.

Topographical, vegetation related and anthropogenic variables were downloaded from freely available sources and pre-processed in ArcGIS (ESRI, 2017) to make appropriate format (ASCII) and same spatial resolution (30 m) (**Table 1**). Climatic variables having fine resolution (30 m) werenot available therefore elevation was used as a proxy of climatic variables.

Source	Category	Variable	Abbreviation	Unit
		Elevation	elevation	m
USGS	T 1'	Slope	slope	Degree
	Topographic	Aspect	aspect	Degree
GEOFABRIK		Distance to water	dist_water	m
		Annual mean EVI	evi_mean	Dimensionless
Landsat	Vegetation- related	Standard deviation of EVI	evi_sd	Dimensionless
		Maximum EVI	evi_max	Dimensionless
		Minimum EVI	evi_min	Dimensionless
GFC		Forest Cover	Forest	Dimensionless
		Distance to settlement	dist_settle	m
GEOEADDIK		Distance to motor road	dist_motorroad	m
GEOFADRIK		Distance to path	dist_path	m
	Anthronogenic	Distance to building	dist_build	m
International Centre for	rinnopogeme	Land use/land cover	land use	m

Table 1: Environmental variables for modeling

2.3. Distribution modeling of species

To overcome the data limitation, species distribution models are popular to map the biodiversity hotspots (Choe et al., 2016). Habitat maps of living beings are useful for the biodiversity hotspot mapping (Mckerrow et al., 2018). Ecologically valuable areas were identified from species distributions and zonation (Karimi et al., 2015). Geological Information System (GIS) and Machine learning algorithm are best for mapping of the biodiversity hotspots (Baltensperger and Huettmann, 2015). The MaxEntwas used to predict the distribution of the species by using the species occurrence points and environmental variables (Elith et al., 2006; Phillips et al., 2006).

This tool is established widely used tool for predicting the distribution of the species in Nepal (Aryal et al., 2016; Bista et al., 2018; KC et al., 2019; Panthi et al., 2019; Sharma et al., 2020; Shrestha and Bawa, 2014; Thapa et al., 2018). This software is widely used to identify biodiversity hotspots (Li et al., 2019; Wulff et al., 2013).

2.4. Accuracy assessment of the modeling

Assessment of the accuracy is essential to validate the models and to understand the performance of the models. A total of 70 % of the species occurrence points were allocated for the training dataset, and 30 % were used as a testing /validation dataset for all models. The models were evaluated by the two methods. One method was threshold independent, and another was threshold dependent. In the threshold independent method, the area under the receiver-operator curve (AUC) of models was reported (Phillips et al., 2006; Wiley et al., 2003). The higher the AUC, the higher the model performance was. The AUC <0.7 denotes poor model performance, 0.7–0.9 denotes moderately useful model performance, and >0.9 denotes excellent model performance (Pearce and Ferrier, 2000). Although AUC is a classical and widely used model evaluation parameter, it is criticized by some researchers (Lobo et al., 2008). Therefore, threshold dependent accuracy assessment: True Skill Statistic (TSS) was also performed for the model evaluation (Merow et al., 2013). TSS was calculated for all model outputs (0-9 replications), and the final TSS was averaged of all 10 replications (Jiang et al., 2014).

2.5. Biodiversity hot spot mapping

Distribution/habitat of threatened fauna and medicinal plants were identified with the help of MaxEnt software. Major threatened fauna of Gandaki Province areSnow leopard, Musk deer, Common leopard, and Asiatic black bear. Among them Snow leopard and Common leopard are flagship species. They are also indications of a healthy and biodiversity-rich ecosystem. It is assumed that if there is a snow leopard or common leopard, the presence of herbivores and plants become most likely. In the case of plant biodiversity, forest, shrubland and grassland were identified as biodiversity-rich areas. An area having more than 0 EVI was identified as EVI rich

area. Finally, a habitat of above mentioned faunal and floral species with EVImore than 0 was identified as biodiversity hotspots in the Gandaki Province. ArcGIS software was used to process the MaxEnt output and to map the biodiversity hotspot.

3. RESULTS AND DISCUSSION

3.1. Habitat of Asiatic black bear

Habitat of an Asiatic black bear is identified by the help of MaxEnt software. AUC and TSS of the model are 0.840 and 0.617. The threshold 0.195 was used to calculate the TSS and to convert the probability habitat suitability map to a suitable/unsuitable binary map. A total of 5,528km² area has beenidentified as the habitat of the Asiatic black bear. Forest areas of the middle Mountain region of *Baglung*, *Myagdi*, *Parbat*, *Kaski*, *Lamjung* and *Gorkha* district are the suitablehabitat for Asiatic black bear(**Figure 4**). Habitat of red panda is subset of habitat of habitat of habitat is included in the biodiversity hotspot.

Figure 4: Habitat of Asiatic black bear

3.2. Habitat of Common leopard

Habitat of common leopard is identified by the help of MaxEnt software. AUC and TSS of the model are 0.871 and 0.626. The threshold 0.227 was used to calculate the TSS and to convert the probability habitat suitability map to a suitable/unsuitable binary map. A total of 3,961 km² area has beenidentified as the habitat of a common leopard. The whole area of *Parbat, Syangja* and *Tanahun*as well as the southern part of *Baglung, Myagdi, Kaski, Lamjung* and *Gorkha* are the suitable habitat forthis Leopard (**Figure 5**).

Figure 5: Habitat of Common leopard

3.3. Habitat of Musk deer

Habitat of musk is identified with the help of MaxEnt software. AUC and TSS of the model are 0.971 and 0.900. The threshold 0.129 was used to calculate the TSS and to convert the

probability habitat suitability map to a suitable/unsuitable binary map. A total 1,179km² area has beenidentified as a habitat of musk deer. The area inside the Dhorpatan Hunting Reserve, Annapurna Conservation Area and Manaslu Conservation area are identified as the suitable habitat forthis species (**Figure 6**).

Figure 6: Habitat of Musk deer

3.4. Habitat of Snow leopard

Habitat of the snow leopard is identified by the help of MaxEnt software. AUC and TSS of the models are 0.941 and 0.788. The threshold 0.148 was used to calculate the TSS and to convert the probability habitat suitability map to a suitable/unsuitable binary map. A total of 2,164 km² area has beenidentified as a habitat of a snow leopard. The area inside the Dhorpatan Hunting Reserve, Annapurna Conservation Area and Manaslu Conservation area are identified as the suitable habitat forthis species (**Figure 7**).

Figure 7: Habitat of Snow leopard

3.5. Habitat of medicinal plants

Habitat of medicinal plants is identified by the help of MaxEnt software. Here occurrence points of Ban lasun (A. wallichii) Chiraito (Sweteriachiraita)GuchchiChyau (Morchellaesculenta), Kurilo (Asparagus officinalis), LauthSalla (Taxusbaccta), Nirmasi (Delphinium denudatum), Okhar (Juglansregia), Paakhanved (Bergenia ciliate), Panchaule (Dactylorhizahatageria), Satuwa (Paris polyphylla), Sungadhwal (Valerianajatamansi) and Timur (Zanthoxylumpiperitum)were used as presence points of medicinal plants during the modeling. AUC and TSS of the models are 0.891 and 0.737. The threshold 0.163 was used to calculate the TSS and to convert the probability habitat suitabilitymap to a suitable/unsuitable binary map. A total of 3,731km² area has been identified as a suitable habitat of a medicinal plant. The area inside the Dhorpatan Hunting Reserve, Annapurna Conservation Area and Manaslu Conservation area are identified as the suitable habitat of medicinal plants (Figure 8). Syangja,

Tanahun, *Nawalpur* and the lower part of *Parbat*, *Kaski*, *Lamjung* and *Gorkha*district are not a suitable area for the medicinal plants.

Figure 8: Habitat of medicinal plants

3.6. Vegetation rich area

Vegetation rich area wasidentified by the help of ArcGIS. In this study forest (Needle leaved close forest Needle leaved open forest, Broad-leaved close forest, and Broad-leaved open forest), shrubland and grasslands wereidentified as vegetation rich areas. The vegetation of agricultural land wasnot identified as a plant biodiversity-rich area because these areas can face human intervention to maximize production resulting in biodiversity loss. A total of 10,139 km² area has beenidentified as vegetation rich area in the Gandaki Province. The middle part is rich in vegetation in comparison to the upper and lower part of the province (**Figure 9**).

Figure 9: Vegetation rich area

3.7. Enhanced vegetation index rich area

EVI rich area wasidentified by the help of ArcGIS. The value range of the EVI is -1 to 1. In this study, the area has more than 0 EVI was defined as EVI rich area. EVI of Landsat 8 (2018-2019) was downloaded and mean EVI was calculated with the help of Google Earth Engine. A total of 19,779km² area has beenidentified as EVI rich area in the Gandaki Province (**Figure 10**).

Figure 10: EVI rich area

3.8. Accuracy of the modeling

The accuracies of all models were found to be good (AUC > 0.8) which shows the robustness of the model accuracies (especially AUC) of habitat modeling of snow leopard and common leopards denote the excellent performance. The accuracies of the other models are showing a moderately useful performance. Accuracies of all models and all replicates are showing in **Table 2**.

Table 2: Accuracies of the modeling

Replicates	Threshold	AUC	TSS
0	0.110	0.833	0.627
1	0.260	0.843	0.624
2	0.120	0.824	0.642

Asiatic black bear

3	0.200	0.868	0.682
4	0.140	0.768	0.447
5	0.430	0.891	0.672
6	0.110	0.878	0.663
7	0.200	0.796	0.512
8	0.100	0.839	0.632
9	0.280	0.855	0.672
Average	0.195	0.840	0.617
Std	0.105	0.037	0.077

Common leopard

Replicates	Threshold	AUC	TSS
0	0.380	0.897	0.702
1	0.240	0.870	0.610
2	0.240	0.855	0.586
3	0.270	0.883	0.642
4	0.190	0.854	0.592
5	0.140	0.854	0.575
6	0.280	0.879	0.624
7	0.190	0.867	0.605
8	0.210	0.895	0.688
9	0.130	0.859	0.638
Average	0.227	0.871	0.626
Std	0.073	0.017	0.042

Musk deer

Replicates	Threshold	AUC	TSS
0	0.040	0.970	0.880
1	0.150	0.976	0.904
2	0.100	0.959	0.854
3	0.220	0.979	0.944
4	0.140	0.966	0.866

5	0.070	0.977	0.914
6	0.150	0.970	0.930
7	0.210	0.971	0.902
8	0.110	0.978	0.933
9	0.100	0.960	0.872
Average	0.129	0.971	0.900
Std	0.057	0.007	0.031

Snow leopard

Replicates	Threshold	AUC	TSS
0	0.230	0.955	0.859
1	0.240	0.951	0.824
2	0.140	0.944	0.806
3	0.140	0.931	0.753
4	0.200	0.934	0.774
5	0.080	0.952	0.803
6	0.130	0.960	0.814
7	0.050	0.930	0.718
8	0.110	0.911	0.719
9	0.160	0.942	0.807
Average	0.148	0.941	0.788
Std	0.062	0.015	0.046

Medicinal plants

Replicates	Threshold	AUC	TSS
0	0.100	0.855	0.785
1	0.040	0.826	0.622
2	0.380	0.919	0.768
3	0.060	0.870	0.691
4	0.110	0.881	0.733
5	0.080	0.873	0.731
6	0.060	0.894	0.642

7	0.190	0.939	0.829
8	0.090	0.866	0.619
9	0.520	0.982	0.953
Average	0.163	0.891	0.737
Std	0.160	0.045	0.104

3.9. Biodiversity hotspot of Gandaki Province

As defined in the methodology part the biodiversity hotspots were mapped with the help of ArcGIS software. Habitat of a Snow leopard or Common leopard and habitat of Asiatic black bear, Musk deer, medicinal plant and forest or shrubland or grassland with EVI more than 0 was identified as biodiversity hotspots. A total of 198 km² area was identified as a biodiversity hotspot in Gandaki Province. Most of the patches of the hotspot were inside the protected areas. Hotspots of the western part fall inside the Dhorpatan Hunting Reserve. All hotspot patches of Mustang and Kaski, as well as majority patches of *Myagdi, Manang* and *Lamjung* are inside the Manaslu Conservation Area. The majority of hotspot patches of Gorkha district are inside the Manaslu Conservation Area. Only some hotspot patches of *Baglung, Myagdi, Parbat, Lamjung, Manang* and *Gorkha* are located outside the protected areas (**Figure 11**). Regionally, mountain regions are rich in biodiversity hotspots due to moderate environmental variables. Distribution of endemic richness (i.e., number of endemic taxa) along was high at mid-elevations in Iran (Noroozi et al., 2018). Similar to that, this study identifies the biodiversity hotspot in the mountain region of the province.

Figure 11: Biodiversity hotspot in Gandaki Province

Most of the biodiversity hotspots are in protected areas. Although part of Chitwan National Parks and its buffer zone is located inside the province, this doesn't have sufficient area for the biodiversity hotspot. The aim of the province is to manage the Nawalpur as production forest. So Nawalpur district is not mapped as biodiversity hotspot. Although it is not practical for modeling, we simple assume that are as biodiversity hotspot.

Table 3: Protected	area	wise	biodivers	sity	hotspot
--------------------	------	------	-----------	------	---------

S.N.	Protected area	Area of Biodiversity hotspot (km ²)
1	Annapurna Consecration Area	145
2	Manaslu Conservation Area	27
3	Dhorpatah Hunting Reserve	3

Manag district supports the large amount of the biodiversity hotspot. Patches of biodiversity hot spots located at local levels of Manang and Mustang districts. District wise distribution of biodiversity hotspots of and major species recorded in these areas are described in **Table 4**.

Hotspot s (HS)	Area (km ²)	District	Municipality/Rural Municipality	Major Floral and Faunal species
HS2	5	Baglun g	Dhorpatan Municipality	Flora: Medicinal plants, Pinuswallichiana, Juniperusindica Fauna: Ursusthibetanus, Panthers paradus, Moschuscryasogaster, Ailurusfulgens
HS3	37	Gorkha	Chum Numri and Dharche Rural Municipality	Flora: Medicinal plants, QuercusSemicarpifoliaJuniperusindi ca Fauna: Ursusthibetanus, Panthers paradus, Moschuscryasogaster, Ailurusfulgens
HS4	12	Kaski	Annapurna, Maadi and Machhapuchhre Rural Municipality	Flora: Medicinal plants, QuercusSemicarpifolia Rhododendron spp. Fauna: Ursusthibetanus, Panthers paradus, Moschuscryasogaster, Ailurusfulgens
HS5	4	Lamjun g	Myarshangdi Rural Municipality	Flora: Medicinal plants, QuercusSemicarpifoliaJuniperusindi ca Fauna: Ursusthibetanus, Panthers paradus, Moschuscryasogaster, Ailurusfulgens
HS6	75	Manang	All local levels	Flora: Medicinal plants, <i>Belutautilis</i> , <i>Pinuswallichiana,Juniperusindica</i> Fauna: Ursusthibetanus, Panthers paradus, Moschuscryasogaster, Ailurusfulgens
HS7	54	Mustang	All local levels	Flora: Medicinal plants, QuercusSemicarpifoliaJuniperusindi ca Fauna: Ursusthibetanus, Panthers paradus, Moschuscryasogaster, Ailurusfulgens

Table 4: District wise biodiversity hotspot

				Flora: Medicinal plants,
				QuercusSemicarpifoliaJuniperusindi
1160				са
пзо			Dhaulagiri and	Fauna: Ursusthibetanus, Panthers
			Raghuganga Rural	paradus, Moschuscryasogaster,
	10	Myagdi	Municipality	Ailurusfulgens
				Flora: Medicinal plants,
				DanpheBhoula
HS9				Fauna: Ursusthibetanus, Panthers
				paradus, Moschuscryasogaster,
	1	Parbat	Modi Rural Municipality	Ailurusfulgens
Total	198			

4. CONCLUSIONS

Middle and High mountain region of the Gandaki Province is of high significance for harboring valuable biodiversity hotspots compared to other regions. Majority of the biodiversity hotspots

are found within the protected area. However, areas outside the protected areas are also equally important for conserving biodiversity since biodiversity hotspots are also present in this area. A total of 198 km² of hotspots stretched from *Gorkha* (Eastern part) to *Baglung* district (Western part) lies in 9 districts (except *Tanahun* and *Nawalpur*) of this Province. It shows that majority of the districts in this region are playing vital role in biodiversity conservation and acting as biodiversity reservoir. Identified biodiversity hotspots are sensitive area for flagship species, important medicinal plants and forest types; hence it needs proper concern on conserving these floral and faunal species to maintain ecosystem diversity and to increase ecosystem resilience.

5. **RECOMMENDATIONS**

This study has identified the habitats of threatened fauna, medicinal plants and biodiversity hotspots in the Gandaki Province. Based on the field visit, literature review and findings, this study provides the following recommendation for the effective conservation of the biodiversity of Gandaki Province.

- Till now, no any legislation has recognized the biodiversity hotspot. Therefore this study recommends creating a sound policy and legislative environment for conserving the identified habitats and biodiversity hotspots for the conservation of multiple species with limited resources.
- Although the government has limited resources, this study recommends to allocate more resources to the identified habitats and biodiversity hotspots as these areas are very important from the biodiversity point of view. By conserving these areas managers can conserve threatened species and their habitat.
- Human-wildlife conflict is a major problem of Nepal and Gandaki Province. After the identification of biodiversity hotspots, it is imperative to identify the human-wildlife conflict hotspot, factor affecting the human-wildlife conflict and mitigation measures of human-wildlife conflict.

REFERENCES

- Ahmadzadeh, F., Liaghati, H., Hassanzadeh Kiabi, B., Mehrabian, A.R., Abdoli, A., Mostafavi, H., 2008. The status and conservation of the Asiatic black bear in Nikshahr County, Baluchistan District of Iran. J. Nat. Hist. 42, 2379–2387. https://doi.org/10.1080/00222930802262741
- Andersen, M.C., Watts, J.M., Freilich, J.E., Yool, S.R., Wakefield, G.I., McCauley, J.F., Fahnestock, P.B., 2000. Regression-tree modelling of desert tortoise habitat in the central Mojave Desert. Ecol. Appl. 10, 890–900. https://doi.org/10.1890/1051-0761(2000)010[0890:RTMODT]2.0.CO;2
- Aryal, A., Shrestha, U.B., Ji, W., Ale, S.B., Shrestha, S., Ingty, T., Maraseni, T., Cockfield, G., Raubenheimer, D., 2016. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecol. Evol. 6, 4065–4075. https://doi.org/10.1002/ece3.2196
- Awan, M.N., Karamanlidis, A.A., Awan, M.S., Nawaz, M.A., Kabir, M., 2016. Priliminary survey on Asiatic black bear in kasmir Himalaya, Pakisthan: Implication for preservation. Int. J. Conserv. Sci. 7, 719–724.
- Balletto, E., Bonelli, S., Borghesio, L., Casale, A., Brandmayr, P., Taglianti, V.A., 2010.
 Hotspots of biodiversity and conservation priorities : A methodological approach. Ital. J.
 Zool. 77, 2–13. https://doi.org/10.1080/11250000902758923
- Baltensperger, A.P., Huettmann, F., 2015. Predictive spatial niche and biodiversity hotspot models for small mammal communities in Alaska: applying machine- learning to conservation planning. Landsc. Ecol. https://doi.org/10.1007/s10980-014-0150-8
- Bazelet, C.S., Thompson, A.C., Naskrecki, P., 2016. Testing the efficacy of global biodiversity hotspots for insect conservation : The case of South African Katydids. PLoS Biol. 11, e0160630. https://doi.org/10.1371/journal.pone.0160630

Bista, M., Panthi, S., Weiskopf, S.R., 2018. Habitat overlap between Asiatic black bear Ursus

thibetanus and red panda Ailurus fulgens in Himalaya. PLoS One 13, e0203697. https://doi.org/10.1371/journal.pone.0203697

- Carolan, M.S., 2009. This is not a biodiversity hotspot: The power of maps and other images in the environmental sciences. Soc. Nat. Resour. 22, 278–286. https://doi.org/10.1080/08941920801961040
- CEPF, 2020. Biodiversity hotspots defined [WWW Document]. Crit. Ecosyst. Partnersh. Fund . URL https://www.cepf.net/our-work/biodiversity-hotspots/hotspots-defined (accessed 6.16.20).
- Choe, H., Thorne, J.H., Seo, C., 2016. Mapping national plant biodiversity patterns in South Korea with the MARS species distribution model. PLoS One 11, e0149511. https://doi.org/10.1371/journal.pone.0149511
- Choudhury, A., Lahiri Choudhury, D.K., Desai, A., Duckworth, J.W., Easa, P.S., Johnsingh, A.J.T., Fernando, P., Hedges, S., Gunawardena, M., Kurt, F., Karanth, U., Lister, A., Menon, V., Riddle, H., Rübel, A., Wikramanayake, E., 2008. Elephas maximus [WWW Document]. IUCN Red List Threat. Species. https://doi.org/http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T7140A12828813.en
- CITES, 2019. Appendices I, II and III, Convention on international trade in endangered species of wild fauna and flora.
- CITES, 2017. Appendices I, II and III, Convention on international trade in endangered species of wild fauna and flora.
- Conservation International, 2020. Biodiversity Hotspots [WWW Document]. URL https://www.conservation.org/priorities/biodiversity-hotspots (accessed 6.16.20).
- Conserve Energy Future, 2020. World's 10 Most Threatened Biodiversity Hotspots [WWW Document]. URL https://www.conserve-energy-future.com/world-most-threatened-biodiversity-hotspots.php (accessed 6.16.20).
- DNPWC, 2017. Protected areas of Nepal. Department of national parks and wildlife conservation, Kathmandu, Nepal.

- DNPWC, 2012. Annual Report (July 2011-July 2012), Department of National Parks and Wildlife Conservation, Nepal.
- Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R., Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend Peterson, A., J. Phillips, S., Richardson, K., Scachetti-Pereira, R., E. Schapire, R., Soberón, J., Williams, S., S. Wisz, M., E. Zimmermann, N., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography (Cop.). 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
- Escobar, L.E., Awan, M.N., Qiao, H., 2015. Anthropogenic disturbance and habitat loss for the red-listed Asiatic black bear (Ursus thibetanus): Using ecological niche modeling and nighttime light satellite imagery. BIOC 191, 400–407. https://doi.org/10.1016/j.biocon.2015.06.040
- ESRI, 2017. ArcGIS Desktop: Release 10.5, Environmental systems research Redlands, California, USA.
- Garshelis, D. & Steinmetz, R., 20916. Ursus thibetanus (Asiatic Black Bear, Himalayan Black Bear) [WWW Document]. URL http://www.iucnredlist.org/details/22824/0 (accessed 2.15.17).
- Global Issues, 2020. Why Is Biodiversity Important? Who Cares? Global Issues [WWW Document]. URL https://www.globalissues.org/article/170/why-is-biodiversity-important-who-cares (accessed 6.16.20).

Gon/MFSC, 2013. Value chain desinging of Chiraito of Panchase protected forest area.

- Hansen, M.C., Potapov, P. V, Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science (80-.). 342, 850–854.
- Harris, A., 2016. Moschus chrysogaster, Alpine Musk Deer. IUCN Red List Threat. Species e.T13895A61977139. https://doi.org/http://dx.doi.org/10.2305/IUCN.UK.2016-

1.RLTS.T13895A61977139.en

- Hrdina, A., Romportl, D., 2017. EVALUATING GLOBAL BIODIVERSITY HOTSPOTS VERY RICH AND EVEN MORE ENDANGERED. Jpurnal Landsc. Ecol. 10, 108–115.
- Jiang, Y., Wang, T., De Bie, C.A.J.M., Skidmore, A.K., Liu, X., Song, S., Zhang, L., Wang, J., Shao, X., 2014. Satellite-derived vegetation indices contribute significantly to the prediction of epiphyllous liverworts. Ecol. Indic. 38, 72–80. https://doi.org/10.1016/j.ecolind.2013.10.024
- Karimi, A., Brown, G., Hockings, M., 2015. Methods and participatory approaches for identifying social- ecological hotspots. Appl. Geogr. 63, 9–20. https://doi.org/10.1016/j.apgeog.2015.06.003
- KC, K.B., Koju, N.P., Bhusal, K.P., Low, M., Ghimire, S.K., Ranabhat, R., Panthi, S., 2019.
 Factors influencing the presence of the endangered Egyptian vulture Neophron percnopterus in Rukum, Nepal. Glob. Ecol. Conserv. 20, e00727.
 https://doi.org/10.1016/j.gecco.2019.e00727
- Lamsal, P., Kumar, L., Aryal, A., Atreya, K., 2018. Future climate and habitat distribution of Himalayan Musk Deer (Moschus chrysogaster). Ecol. Inform. 44, 101–108. https://doi.org/10.1016/j.ecoinf.2018.02.004
- Lamsal, P., Kumar, L., Atreya, K., Pant, K.P., 2017. Vulnerability and impacts of climate change on forest and freshwater wetland ecosystems in Nepal: A review. Ambio 46, 915–930. https://doi.org/10.1007/s13280-017-0923-9
- Li, J., Hughes, A.C., Dudgeon, D., 2019. Mapping wader biodiversity along the East Asian-Australasian flyway. PLoS One 14, e0210552. https://doi.org/10.1371/journal.pone.0210552
- Lobo, J.M., Jiménez-valverde, A., Real, R., 2008. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x

Marchese, C., 2015. Biodiversity hotspots : A shortcut for a more complicated concept. Glob.

Ecol. Conserv. 3, 297–309. https://doi.org/10.1016/j.gecco.2014.12.008

- McCarthy, T., Mallon, D., Jackson, R., Zahler, P., McCarthy, K., 2017. Panthera uncia, The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2017-2.RLTS.T22732A50664030.en
- Mckerrow, A.J., Tarr, N.M., Rubino, M.J., Williams, S.G., 2018. Patterns of species richness hotspots and estimates of their protection are sensitive to spatial resolution. Divers. Distrib. 1464–1477. https://doi.org/10.1111/ddi.12779
- Merow, C., Smith, M.J., Silander, J.A., 2013. A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter. Ecography (Cop.). 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
- Merritt, M., Maldaner, M.E., Maria, A., Almeida, R. De, 2019. WHAT ARE BIODIVERSITY HOTSPOTS ? Front. Young Minds 7, 29. https://doi.org/10.3389/frym.2019.00029
- Miller, E.C., Hayashi, K.T., Song, D., Wiens, J.J., 2018. Explaining the ocean 's richest biodiversity hotspot and global patterns of fish diversity. Proceeding R. Soc. B 285, 20181314.
- MoITFE, 2018. Status paper. Ministry of Industry, Tourism, Forest and Environment, Gandaki Province, Pokhara.
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
- National Geographic Society, 2020. Biodiversity Hotspots [WWW Document]. URL https://www.nationalgeographic.org/encyclopedia/biodiversity-hotspots/ (accessed 6.16.20).
- Noroozi, J., Talebi, A., Doostmohammadi, M., Rumpf, S.B., Linder, H.P., Schneeweiss, G.M., 2018. Hotspots within a global biodiversity hotspot areas of endemism are associated with high mountain ranges. Sci. Rep. 8, 10345. https://doi.org/10.1038/s41598-018-28504-9
- Panthi, S., 2018. Predicting current and future habitat suitability for red pandas in Nepal. MSc thesis. University of Twente, faculty of geoinformation and earth observation, Enschede,

Netherlands.

- Panthi, S., Wang, T., Sun, Y., Thapa, A., 2019. An assessment of human impacts on endangered red pandas (Ailurus fulgens) living in the Himalaya. Ecol. Evol. 9, 13413–13425.
- Pearce, J., Ferrier, S., 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Modell. 133, 225–245. https://doi.org/10.1016/S0304-3800(00)00322-7
- Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modelling of species geographic distributions. Ecol. Modell. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
- Sharma, P., Panthi, S., Yadav, S.K., Bhatta, M., Karki, A., Duncan, T., Poudel, M., Acharya, K.P., 2020. Suitable habitat of wild Asian elephant in western Terai of Nepal. Ecol. Evol. In Press.
- Shrestha, U.B., Bawa, K.S., 2014. Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal Himalaya. PLoS One 9, e106405. https://doi.org/10.1371/journal.pone.0106405
- Stein, A.B., Athreya, V., Gerngross, P., Balme, G., Henschel, P., Karanth, U., Miquelle, D., Rostro-Garcia, S., Kamler, J.F., Laguardia, A., Khorozyan, I., Ghoddousi, A., 2016. Panthera pardus. IUCN Red List Threat. Species 8235, e.T15954A102421779. https://doi.org/http://dx.doi.org/10.2305/IUCN.UK.2016- 1.RLTS.T15954A50659089.en [see
- Thapa, A., Wu, R., Hu, Y., Nie, Y., Singh, P.B., Khatiwada, J.R., Yan, L., Gu, X., Wei, F., 2018. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol. Evol. 8, 10542–10554. https://doi.org/10.1002/ece3.4526
- Tiwari, U., Adams, S.J., Begum, S.N., Krishnamurthy, K. V, Ravikumar, K., Padma, V., 2014. Pharmacognostic studies on two Himalayan species of traditional medicinal value : Allium wallichii and Allium stracheyi. Not. Sci. Biol. 6, 149–154. https://doi.org/10.15835/nsb.6.2.9308

- Trizzino, M., Bisi, F., Maiorano, L., Martinoli, A., Petitta, M., Preatoni, D.G., Audisio, P., 2014. Mapping biodiversity hotspots and conservation priorities for the Euro-Mediterranean headwater ecosystems, as inferred from diversity and distribution of a water beetle lineage. Biodivers. Conserv. https://doi.org/10.1007/s10531-014-0798-z
- Uddin, K., Shrestha, H.L., Murthy, M.S.R., Bajracharya, B., Shrestha, B., Gilani, H., Pradhan, S., Dangol, B., 2015. Development of 2010 national land cover database for the Nepal. J. Environ. Manage. 148, 82–90. https://doi.org/10.1016/j.jenvman.2014.07.047
- Wiley, E.O., McNyset, K.M., Peterson, A.T., Robins, C.R., Stewart, A.M., 2003. Niche modeling and geographic range predictions in the marine environment using a machinelearning algorithm. Oceanography 16, 120–127. https://doi.org/http://dx.doi.org/10.5670/oceanog.2003.42
- Wulff, A.S., Hollingsworth, P.M., Ahrends, A., Jaffre, T., Veillon, J., Huillier, L.L., Fogliani, B., 2013. Conservation Priorities in a Biodiversity Hotspot : Analysis of Narrow Endemic Plant Species in New Caledonia. PLoS One 8, e73371. https://doi.org/10.1371/journal.pone.0073371
- WWF, 2013. Chitwant Annapurna landscape biodiversity important areas and linkage. WWF Nepal, Hariyo Ban Program, Kathmandu, Nepal.

APPENDICES

Data used for modeling

S.N.	Species	X	Y
1	Asiatic black bear	84.1000	28.2850
2	Asiatic black bear	84.6955	28.5467
3	Asiatic black bear	85.0221	28.4850
4	Asiatic black bear	84.8784	28.5560
5	Asiatic black bear	84.8206	28.5184
6	Asiatic black bear	84.7896	28.4820
7	Asiatic black bear	83.7347	28.1557
8	Asiatic black bear	83.6505	28.1109
9	Asiatic black bear	83.7059	28.3354
10	Asiatic black bear	83.6576	28.3228
11	Asiatic black bear	83.2433	28.5131
12	Asiatic black bear	84.1086	28.2644
13	Asiatic black bear	84.3573	28.5137
14	Asiatic black bear	84.1228	28.4259
15	Asiatic black bear	84.0742	28.3662
16	Asiatic black bear	84.1020	28.2878
17	Asiatic black bear	84.2087	28.3567
18	Asiatic black bear	84.1487	28.3107
19	Asiatic black bear	84.0958	28.3549
20	Asiatic black bear	83.6792	28.5180
21	Asiatic black bear	83.7031	28.4819
22	Asiatic black bear	83.7206	28.4643
23	Asiatic black bear	83.6782	28.4171
24	Asiatic black bear	83.8388	28.4389
25	Asiatic black bear	83.8129	28.4226
26	Asiatic black bear	83.8246	28.4176
27	Asiatic black bear	83.8321	28.3728
28	Asiatic black bear	83.7535	28.3541
29	Asiatic black bear	84.3824	28.5538
30	Asiatic black bear	84.3550	28.5179
31	Asiatic black bear	83.6595	28.6562
32	Asiatic black bear	83.6043	28.6973
33	Asiatic black bear	83.6365	28.6907
34	Asiatic black bear	83.6310	28.6174

35	Asiatic black bear	83.9720	28.3919
36	Asiatic black bear	83.8896	28.4276
37	Asiatic black bear	83.9198	28.3606
38	Asiatic black bear	84.3423	28.2717
39	Asiatic black bear	84.3196	28.2992
40	Asiatic black bear	84.3127	28.4081
41	Asiatic black bear	84.3106	28.3407
42	Asiatic black bear	84.2943	28.2790
43	Asiatic black bear	84.2634	28.3263
44	Asiatic black bear	84.2058	28.2921
45	Asiatic black bear	84.2593	28.2525
46	Asiatic black bear	84.3635	28.3019
47	Asiatic black bear	84.3683	28.3680
48	Asiatic black bear	84.3660	28.3325
49	Asiatic black bear	84.1428	28.2610
50	Asiatic black bear	83.5975	28.6209
51	Asiatic black bear	83.6294	28.6444
52	Asiatic black bear	84.1086	28.2644
53	Common leopard	84.0260	27.9224
54	Common leopard	84.0600	27.8481
55	Common leopard	84.0823	28.2017
56	Common leopard	83.7965	28.2292
57	Common leopard	83.7908	28.2306
58	Common leopard	83.7931	28.2283
59	Common leopard	83.7932	28.2260
60	Common leopard	83.7959	28.2221
61	Common leopard	84.3484	28.2415
62	Common leopard	84.5220	28.1095
63	Common leopard	84.5184	28.1141
64	Common leopard	84.3130	28.2629
65	Common leopard	83.8037	28.2218
66	Common leopard	83.8002	28.2271
67	Common leopard	83.7965	28.2292
68	Common leopard	84.1797	27.7673
69	Common leopard	83.8523	28.1420
70	Common leopard	83.8347	28.1508
71	Common leopard	83.8376	28.1555
72	Common leopard	83.8383	28.1580
73	Common leopard	83.8376	28.1610

74	Common leopard	83.8312	28.1810
75	Common leopard	83.8297	28.1880
76	Common leopard	83.8064	28.1895
77	Common leopard	83.7763	28.1894
78	Common leopard	83.7767	28.1935
79	Common leopard	83.7721	28.1860
80	Common leopard	83.7781	28.1751
81	Common leopard	83.8050	28.1765
82	Common leopard	83.8038	28.1744
83	Common leopard	83.8438	28.1755
84	Common leopard	83.8444	28.1705
85	Common leopard	83.8382	28.1723
86	Common leopard	83.8971	28.1745
87	Common leopard	83.8978	28.1747
88	Common leopard	83.8002	28.1623
89	Common leopard	83.8003	28.1624
90	Common leopard	83.7943	28.1983
91	Common leopard	83.7936	28.1980
92	Common leopard	83.7988	28.2058
93	Common leopard	83.8289	28.1597
94	Common leopard	83.8819	28.1824
95	Common leopard	83.8790	28.1805
96	Common leopard	83.7873	28.1975
97	Common leopard	83.7862	28.1990
98	Common leopard	83.8689	28.1750
99	Common leopard	83.8666	28.1749
100	Common leopard	83.7767	28.1701
101	Common leopard	83.7724	28.1723
102	Common leopard	83.7685	28.1681
103	Common leopard	83.7673	28.1665
104	Common leopard	83.7668	28.1663
105	Common leopard	83.7740	28.1657
106	Common leopard	83.7735	28.1670
107	Common leopard	83.7818	28.1645
108	Common leopard	83.7954	28.1621
109	Common leopard	83.7947	28.1599
110	Common leopard	83.4487	2.8898
111	Common leopard	83.7781	28.1751
112	Common leopard	83.7772	28.1757

113	Common leopard	83.7775	28.1772
114	Common leopard	83.7701	28.1786
115	Common leopard	83.7694	28.1827
116	Common leopard	83.7706	28.1833
117	Common leopard	83.7678	28.1820
118	Common leopard	83.7721	28.1860
119	Common leopard	83.7824	28.1916
120	Common leopard	83.7849	28.1812
121	Common leopard	83.8443	28.1326
122	Common leopard	83.8440	28.1317
123	Common leopard	83.8480	28.1285
124	Common leopard	83.8408	28.1293
125	Common leopard	83.8386	28.1328
126	Common leopard	83.8254	28.1348
127	Common leopard	83.8246	28.1355
128	Common leopard	83.8277	28.1362
129	Common leopard	83.7926	28.1775
130	Common leopard	83.7926	28.1775
131	Common leopard	83.8006	28.2660
132	Common leopard	83.8026	28.1740
133	Common leopard	83.8052	28.1732
134	Common leopard	83.8062	28.1733
135	Common leopard	83.8603	28.1545
136	Common leopard	83.8523	28.1573
137	Common leopard	83.8459	28.1610
138	Common leopard	83.8106	28.1739
139	Common leopard	83.8104	28.1701
140	Common leopard	83.8115	28.1662
141	Common leopard	83.8169	28.1582
142	Common leopard	83.8170	28.1570
143	Common leopard	83.8175	28.1566
144	Common leopard	83.8186	28.1593
145	Common leopard	83.8298	28.1583
146	Common leopard	83.8302	28.1583
147	Common leopard	83.8307	28.1591
148	Common leopard	83.8352	28.1497
149	Common leopard	83.8291	28.1889
150	Common leopard	83.8295	28.1900
151	Common leopard	83.8292	28.1869

152	Common leopard	83.8262	28.1801
153	Common leopard	83.8243	28.1823
154	Common leopard	83.8236	28.1843
155	Common leopard	83.8194	28.1861
156	Common leopard	83.8019	28.1906
157	Common leopard	83.8016	28.1903
158	Common leopard	83.8014	28.1905
159	Common leopard	83.8011	28.1908
160	Common leopard	83.8008	28.1909
161	Common leopard	83.7985	28.1923
162	Common leopard	83.7988	28.1926
163	Common leopard	83.8061	28.2011
164	Common leopard	83.7999	28.1998
165	Common leopard	83.7988	28.1980
166	Common leopard	83.8002	28.1862
167	Common leopard	83.7990	28.1847
168	Common leopard	83.8000	28.1820
169	Common leopard	83.7944	28.1925
170	Common leopard	83.7944	28.1929
171	Common leopard	83.7940	28.1920
172	Common leopard	83.7896	28.1973
173	Common leopard	83.7784	28.1951
174	Common leopard	83.7877	28.1959
175	Common leopard	83.7858	28.1867
176	Common leopard	83.7872	28.1819
177	Common leopard	83.8836	28.1609
178	Common leopard	83.8817	28.1524
179	Common leopard	83.1567	28.3401
180	Common leopard	82.9870	28.4151
181	Common leopard	83.6223	28.1799
182	Common leopard	83.6110	28.1849
183	Common leopard	83.3651	28.5269
184	Common leopard	83.8567	28.4567
185	Common leopard	84.5001	28.0571
186	Common leopard	84.4427	28.5260
187	Common leopard	84.4612	28.5219
188	Common leopard	84.4586	28.5230
189	Common leopard	84.4107	28.5724
190	Common leopard	84.4108	28.5730

191	Common leopard	84.4741	28.6656
192	Common leopard	84.6600	28.1395
193	Common leopard	84.5489	27.9902
194	Common leopard	84.6277	28.0346
195	Common leopard	84.7170	28.0794
196	Common leopard	84.6332	28.1347
197	Common leopard	83.7326	28.1540
198	Common leopard	83.6581	28.1596
199	Common leopard	83.6492	28.1054
200	Common leopard	83.5936	28.0310
201	Common leopard	83.6678	28.2328
202	Common leopard	83.7022	28.2999
203	Common leopard	83.6945	28.3255
204	Common leopard	83.6070	28.3850
205	Common leopard	83.7287	28.7821
206	Common leopard	84.0750	28.3350
207	Common leopard	84.0700	28.3100
208	Common leopard	84.1940	28.2530
209	Common leopard	83.6434	28.6090
210	Common leopard	83.6445	28.6100
211	Common leopard	83.6417	28.6085
212	Common leopard	83.6455	28.6098
213	Common leopard	83.6454	28.6087
214	Common leopard	83.6454	28.6101
215	Common leopard	83.6454	28.6102
216	Common leopard	84.2570	27.6629
217	Common leopard	84.0529	28.1124
218	Common leopard	83.9526	28.2047
219	Common leopard	83.9526	28.3852
220	Common leopard	84.0546	28.2949
221	Common leopard	83.8679	28.3794
222	Common leopard	83.8491	28.2223
223	Common leopard	84.1561	28.0241
224	Common leopard	84.0544	27.9339
225	Common leopard	84.1502	27.9390
226	Common leopard	84.4609	27.9332
227	Common leopard	84.3596	28.0237
228	Common leopard	84.5644	28.2938
229	Common leopard	84.5639	28.2035

230	Common leopard	84.1485	28.6405
231	Musk deer	84.1023	28.6503
232	Musk deer	84.1031	28.6506
233	Musk deer	84.1051	28.6523
234	Musk deer	84.1065	28.6533
235	Musk deer	84.1084	28.6537
236	Musk deer	84.1088	28.6544
237	Musk deer	84.1065	28.6562
238	Musk deer	84.1061	28.6566
239	Musk deer	84.1054	28.6559
240	Musk deer	84.1046	28.6531
241	Musk deer	84.1037	28.6518
242	Musk deer	84.1052	28.6468
243	Musk deer	84.1051	28.6449
244	Musk deer	84.1056	28.6443
245	Musk deer	84.1073	28.6448
246	Musk deer	84.1098	28.6428
247	Musk deer	84.1115	28.6417
248	Musk deer	84.1119	28.6419
249	Musk deer	84.1127	28.6422
250	Musk deer	84.1162	28.6413
251	Musk deer	84.1170	28.6434
252	Musk deer	84.1181	28.6424
253	Musk deer	84.1199	28.6426
254	Musk deer	84.1221	28.6441
255	Musk deer	84.1229	28.6420
256	Musk deer	84.1260	28.6424
257	Musk deer	84.1315	28.6450
258	Musk deer	84.1375	28.6437
259	Musk deer	84.1367	28.6457
260	Musk deer	84.1389	28.6471
261	Musk deer	84.1395	28.6465
262	Musk deer	84.1398	28.6468
263	Musk deer	84.1404	28.6466
264	Musk deer	84.1403	28.6471
265	Musk deer	84.1403	28.6474
266	Musk deer	84.1402	28.6479
267	Musk deer	84.1402	28.6481
268	Musk deer	84.1405	28.6482

269	Musk deer	84.1408	28.6483
270	Musk deer	84.1405	28.6485
271	Musk deer	84.1402	28.6488
272	Musk deer	84.1380	28.6389
273	Musk deer	84.1372	28.6387
274	Musk deer	84.1376	28.6378
275	Musk deer	84.1454	28.6366
276	Musk deer	84.1368	28.6358
277	Musk deer	84.1360	28.6345
278	Musk deer	84.1361	28.6312
279	Musk deer	84.1377	28.6273
280	Musk deer	84.1402	28.6256
281	Musk deer	84.1423	28.6230
282	Musk deer	84.1461	28.6216
283	Musk deer	84.1486	28.6192
284	Musk deer	84.4716	28.6110
285	Musk deer	84.4729	28.6105
286	Musk deer	84.4725	28.6117
287	Musk deer	84.4725	28.6139
288	Musk deer	84.4727	28.6147
289	Musk deer	84.4704	28.6155
290	Musk deer	84.4729	28.6168
291	Musk deer	84.4737	28.6181
292	Musk deer	84.4649	28.6212
293	Musk deer	84.4734	28.6244
294	Musk deer	84.4685	28.6483
295	Musk deer	84.4678	28.6504
296	Musk deer	84.4672	28.6512
297	Musk deer	84.4667	28.6524
298	Musk deer	84.4669	28.6551
299	Musk deer	84.4677	28.6559
300	Musk deer	84.4726	28.6261
301	Musk deer	84.4701	28.6234
302	Musk deer	84.4705	28.6222
303	Musk deer	84.4702	28.6205
304	Musk deer	84.1432	28.6028
305	Musk deer	84.1422	28.6030
306	Musk deer	84.1415	28.6024
307	Musk deer	84.1406	28.6024

308	Musk deer	84.1397	28.6024
309	Musk deer	84.1432	28.6025
310	Musk deer	84.1412	28.6024
311	Musk deer	84.1403	28.6024
312	Musk deer	84.1393	28.6024
313	Musk deer	84.1777	28.5956
314	Musk deer	84.1851	28.5954
315	Musk deer	84.1850	28.5963
316	Musk deer	84.1841	28.5967
317	Musk deer	84.1858	28.5987
318	Musk deer	84.1852	28.5994
319	Musk deer	84.1034	28.6226
320	Musk deer	84.1037	28.6238
321	Musk deer	84.1008	28.6243
322	Musk deer	84.0999	28.6243
323	Musk deer	84.0998	28.6243
324	Musk deer	84.0978	28.6251
325	Musk deer	84.0981	28.6301
326	Musk deer	84.0953	28.6299
327	Musk deer	84.1501	28.6384
328	Musk deer	84.1496	28.6377
329	Musk deer	84.1491	28.6362
330	Musk deer	84.1436	28.6336
331	Musk deer	84.1437	28.6341
332	Musk deer	84.1446	28.6346
333	Musk deer	89.9916	28.6799
334	Musk deer	89.9912	28.6802
335	Musk deer	89.9932	28.6798
336	Musk deer	84.3527	28.5695
337	Musk deer	84.3515	28.5687
338	Musk deer	83.1890	28.5601
339	Musk deer	83.1848	28.5602
340	Musk deer	83.1839	28.5579
341	Musk deer	83.1853	28.5574
342	Musk deer	83.1864	28.5570
343	Musk deer	83.1875	28.5563
344	Musk deer	83.1899	28.5556
345	Musk deer	83.1900	28.5555
346	Musk deer	83.1898	28.5554

347	Musk deer	83.1901	28.5559
348	Musk deer	83.1905	28.5559
349	Musk deer	83.1834	28.5579
350	Musk deer	83.1913	28.5544
351	Musk deer	83.2041	28.5531
352	Musk deer	83.2060	28.5523
353	Musk deer	83.2061	28.5523
354	Musk deer	83.2068	28.5519
355	Musk deer	82.9375	28.5349
356	Musk deer	82.9350	28.5459
357	Musk deer	82.9345	28.5495
358	Musk deer	82.9351	28.5490
359	Musk deer	82.9351	28.5490
360	Musk deer	82.9362	28.5485
361	Musk deer	82.9362	28.5469
362	Musk deer	82.9358	28.5462
363	Musk deer	82.9362	28.5476
364	Musk deer	83.9922	28.6641
365	Musk deer	84.0528	28.6397
366	Musk deer	84.0004	28.6639
367	Musk deer	84.0532	28.6411
368	Musk deer	83.9811	28.6613
369	Musk deer	83.9394	28.6698
370	Musk deer	83.9356	28.6742
371	Musk deer	83.0552	28.6003
372	Musk deer	83.0429	28.5925
373	Musk deer	83.0438	28.5920
374	Musk deer	83.8033	28.7909
375	Musk deer	84.8116	28.5097
376	Musk deer	84.6735	28.5700
377	Musk deer	85.2422	28.6419
378	Musk deer	85.2303	28.6456
379	Musk deer	85.2303	28.6456
380	Musk deer	85.3192	28.7342
381	Musk deer	83.7870	28.9626
382	Musk deer	84.1570	28.6017
383	Musk deer	84.1435	28.6072
384	Musk deer	84.1466	28.6352
385	Musk deer	84.1012	28.6242

386	Musk deer	84.0548	28.6400
387	Musk deer	84.0326	28.6412
388	Musk deer	83.8623	28.4642
389	Musk deer	83.9733	28.6633
390	Musk deer	83.9582	28.6678
391	Musk deer	84.2114	28.5505
392	Musk deer	84.1785	28.5720
393	Musk deer	84.2423	28.5438
394	Musk deer	84.1762	28.5963
395	Musk deer	83.8033	28.7908
396	Musk deer	83.8133	28.7818
397	Musk deer	83.7840	28.7851
398	Musk deer	83.7664	28.7767
399	Snow leopard	83.9801	28.7731
400	Snow leopard	83.9397	28.7389
401	Snow leopard	83.9778	28.7332
402	Snow leopard	83.9842	28.7443
403	Snow leopard	83.9924	28.7074
404	Snow leopard	83.9849	28.6801
405	Snow leopard	84.0131	28.6456
406	Snow leopard	84.0327	28.6832
407	Snow leopard	84.0326	28.6819
408	Snow leopard	83.9699	28.6872
409	Snow leopard	83.8432	28.7086
410	Snow leopard	84.1493	28.6508
411	Snow leopard	84.2650	28.7234
412	Snow leopard	84.2754	28.7772
413	Snow leopard	84.2518	28.7791
414	Snow leopard	84.2662	28.7656
415	Snow leopard	84.2587	28.7533
416	Snow leopard	83.7963	28.7673
417	Snow leopard	83.8536	28.7924
418	Snow leopard	83.8713	28.8570
419	Snow leopard	83.6705	28.8359
420	Snow leopard	83.9110	28.9024
421	Snow leopard	83.9008	29.2843
422	Snow leopard	81.9358	29.1859
423	Snow leopard	82.9358	29.1859
424	Snow leopard	82.9431	29.1938

425	Snow leopard	29.1859	29.1859
426	Snow leopard	82.9431	29.1937
427	Snow leopard	82.9421	29.1931
428	Snow leopard	82.9430	29.1933
429	Snow leopard	82.9431	29.1938
430	Snow leopard	82.8643	29.1495
431	Snow leopard	82.8224	29.1439
432	Snow leopard	82.2090	29.1447
433	Snow leopard	82.8338	29.1420
434	Snow leopard	82.8251	29.1439
435	Snow leopard	82.8215	29.1439
436	Snow leopard	82.8206	29.1430
437	Snow leopard	82.5520	29.6445
438	Snow leopard	82.8721	29.1505
439	Snow leopard	82.0845	29.1400
440	Snow leopard	82.8257	29.1428
441	Snow leopard	82.8239	29.1428
442	Snow leopard	82.8205	29.1429
443	Snow leopard	82.7843	29.1346
444	Snow leopard	82.8596	29.1443
445	Snow leopard	82.8251	29.1428
446	Snow leopard	82.8251	29.1440
447	Snow leopard	82.8205	29.1429
448	Snow leopard	83.7657	28.8979
449	Snow leopard	84.4716	28.6672
450	Snow leopard	84.4729	28.6686
451	Snow leopard	84.3556	28.5598
452	Snow leopard	84.3556	28.5614
453	Snow leopard	84.3625	28.5809
454	Snow leopard	84.4573	28.5191
455	Snow leopard	84.4738	28.5127
456	Snow leopard	84.4693	28.5158
457	Snow leopard	84.4790	28.5097
458	Snow leopard	84.4787	28.5015
459	Snow leopard	84.4840	28.4961
460	Snow leopard	84.4864	28.4936
461	Snow leopard	84.4486	28.5279
462	Snow leopard	84.4745	28.5138
463	Snow leopard	84.4716	28.6672

464	Snow leopard	84.4729	28.6686
465	Snow leopard	84.3551	28.5706
466	Snow leopard	84.3559	28.5691
467	Snow leopard	84.3567	28.5722
468	Snow leopard	84.3544	28.5720
469	Snow leopard	84.3546	28.5680
470	Snow leopard	84.3551	28.5671
471	Snow leopard	84.3554	28.5659
472	Snow leopard	84.3558	28.5642
473	Snow leopard	84.3544	28.5617
474	Snow leopard	84.3551	28.5594
475	Snow leopard	84.3557	28.5598
476	Snow leopard	84.3560	28.5631
477	Snow leopard	84.3568	28.5635
478	Snow leopard	84.3574	28.5644
479	Snow leopard	84.3576	28.5655
480	Snow leopard	84.3569	28.5674
481	Snow leopard	84.3597	28.5781
482	Snow leopard	84.3606	28.5789
483	Snow leopard	84.3622	28.5799
484	Snow leopard	84.3617	28.5807
485	Snow leopard	84.3617	28.5813
486	Snow leopard	84.3621	28.5818
487	Snow leopard	84.3636	28.5827
488	Snow leopard	84.3683	28.5852
489	Snow leopard	84.3673	28.5845
490	Snow leopard	84.4209	28.5916
491	Snow leopard	84.4202	28.5939
492	Snow leopard	84.4257	28.5962
493	Snow leopard	84.4156	28.5858
494	Snow leopard	84.4157	28.5865
495	Snow leopard	84.4159	28.5870
496	Snow leopard	84.4161	28.5873
497	Snow leopard	84.4185	28.5888
498	Snow leopard	84.4198	28.5878
499	Snow leopard	84.4214	28.5906
500	Snow leopard	84.4487	28.5973
501	Snow leopard	84.4718	28.6254
502	Snow leopard	84.3542	28.5698

503	Snow leopard	84.3535	28.5696
504	Snow leopard	84.3530	28.5695
505	Snow leopard	84.3527	28.5695
506	Snow leopard	84.3522	28.5691
507	Snow leopard	84.3517	28.5688
508	Snow leopard	84.3515	28.5687
509	Snow leopard	84.3510	28.5681
510	Snow leopard	84.3545	28.5688
511	Snow leopard	84.3549	28.5685
512	Snow leopard	84.3548	28.5691
513	Snow leopard	84.3561	28.5701
514	Snow leopard	84.3572	28.5701
515	Snow leopard	84.3578	28.5706
516	Snow leopard	84.3584	28.5720
517	Snow leopard	84.3592	28.5759
518	Snow leopard	84.3591	28.5773
519	Snow leopard	84.3575	28.5760
520	Snow leopard	84.3611	28.5785
521	Snow leopard	84.3619	28.5794
522	Snow leopard	84.3625	28.5807
523	Snow leopard	84.3630	28.5822
524	Snow leopard	84.3660	28.5831
525	Snow leopard	84.3677	28.5835
526	Snow leopard	84.3521	28.5663
527	Snow leopard	84.3707	28.5129
528	Snow leopard	84.4013	28.5217
529	Snow leopard	84.4250	28.5270
530	Snow leopard	84.4282	28.5277
531	Snow leopard	84.4313	28.5280
532	Snow leopard	84.4390	28.5279
533	Snow leopard	84.4385	28.5277
534	Snow leopard	84.4593	28.5215
535	Snow leopard	84.4604	28.5228
536	Snow leopard	84.4600	28.5232
537	Snow leopard	84.4753	28.4987
538	Snow leopard	84.4800	28.5087
539	Snow leopard	84.4771	28.5109
540	Snow leopard	84.4813	28.5058
541	Snow leopard	84.4778	28.4955

542	Snow leopard	84.4754	28.4966
543	Snow leopard	84.4827	28.5072
544	Snow leopard	84.4783	28.5030
545	Snow leopard	84.4748	28.5019
546	Snow leopard	84.4747	28.5126
547	Snow leopard	84.4730	28.5138
548	Snow leopard	84.4495	28.5266
549	Snow leopard	84.4507	28.5265
550	Snow leopard	84.3983	28.5217
551	Snow leopard	84.4276	28.5274
552	Snow leopard	84.4258	28.5275
553	Snow leopard	84.4380	28.5275
554	Snow leopard	84.4295	28.5275
555	Snow leopard	84.4587	28.5215
556	Snow leopard	84.4584	28.5206
557	Snow leopard	84.4576	28.5200
558	Snow leopard	84.4579	28.5181
559	Snow leopard	84.4583	28.5173
560	Snow leopard	84.4592	28.5187
561	Snow leopard	84.4718	28.5140
562	Snow leopard	84.4751	28.5115
563	Snow leopard	84.4790	28.5054
564	Snow leopard	84.4827	28.5059
565	Snow leopard	84.4798	28.5061
566	Snow leopard	84.4803	28.4988
567	Snow leopard	84.4815	28.4983
568	Snow leopard	84.4824	28.4974
569	Snow leopard	84.4831	28.4968
570	Snow leopard	84.4838	28.4953
571	Snow leopard	84.4856	28.4944
572	Snow leopard	84.4689	28.5156
573	Snow leopard	84.4488	28.5273
574	Snow leopard	83.6224	28.7406
575	Snow leopard	83.6440	28.6753
576	Snow leopard	83.6078	28.6585
577	Snow leopard	83.6232	28.6656
578	Snow leopard	83.6271	28.6674
579	Snow leopard	83.5939	28.6809
580	Snow leopard	85.2303	28.6456

581	Snow leopard	85.2314	28.6456
582	Snow leopard	85.2319	28.7839
583	Ban lasun	84.3707	28.5073
584	Ban lasun	84.3727	28.5068
585	Ban lasun	84.3769	28.5041
586	Ban lasun	84.3827	28.5046
587	Ban lasun	84.3849	28.5078
588	Ban lasun	84.3851	28.5074
589	Ban lasun	84.3852	28.5070
590	Ban lasun	84.3856	28.5070
591	Ban lasun	84.3856	28.5068
592	Ban lasun	84.3853	28.5064
593	Ban lasun	84.3846	28.5067
594	Ban lasun	84.3834	28.5062
595	Ban lasun	84.3835	28.5061
596	Ban lasun	84.3837	28.5069
597	Ban lasun	84.3849	28.5077
598	Ban lasun	84.3850	28.5077
599	Ban lasun	84.3851	28.5077
600	Ban lasun	84.3851	28.5075
601	Ban lasun	84.3851	28.5072
602	Ban lasun	84.3854	28.5068
603	Ban lasun	84.3854	28.5065
604	Ban lasun	84.3853	28.5065
605	Ban lasun	84.3852	28.5064
606	Ban lasun	84.3851	28.5063
607	Ban lasun	84.3849	28.5063
608	Ban lasun	84.3846	28.5063
609	Ban lasun	84.3788	28.5033
610	Ban lasun	84.3785	28.5033
611	Ban lasun	84.3783	28.5034
612	Chiraito	84.3667	28.5127
613	Chiraito	84.3671	28.5130
614	Chiraito	84.3674	28.5129
615	Chiraito	84.3675	28.5126
616	Chiraito	84.3690	28.5119
617	Chiraito	84.3692	28.5110
618	Chiraito	84.3695	28.5113
619	Chiraito	84.3708	28.5087

620	Chiraito	84.3764	28.4708
621	Chiraito	84.3788	28.4698
622	Chiraito	84.3789	28.4698
623	Chiraito	84.3789	28.4698
624	Chiraito	84.3799	28.4700
625	Chiraito	84.3800	28.4703
626	Chiraito	84.3801	28.4705
627	Chiraito	84.3804	28.4705
628	Chiraito	84.3810	28.4704
629	Chiraito	84.3819	28.4709
630	Chiraito	84.3818	28.4717
631	Chiraito	84.3818	28.4707
632	Chiraito	84.3819	28.4707
633	Chiraito	84.3820	28.4707
634	Chiraito	84.3814	28.4700
635	Chiraito	84.3811	28.4700
636	Chiraito	84.3751	28.5394
637	Chiraito	84.3732	28.5372
638	Chiraito	84.3728	28.5366
639	Chiraito	84.3722	28.5360
640	Chiraito	84.3717	28.5357
641	Chiraito	84.3708	28.5354
642	Chiraito	84.3708	28.5363
643	Chiraito	84.3756	28.5396
644	Chiraito	84.3740	28.5383
645	Chiraito	84.3701	28.5367
646	Chiraito	84.3699	28.5363
647	chiraito	84.3614	28.5128
648	chiraito	84.3612	28.5113
649	chiraito	84.3622	28.5104
650	chiraito	84.3620	28.5102
651	Chiraito	84.3619	28.5083
652	Chiraito	84.4089	28.5604
653	Chiraito	84.3978	28.5607
654	Chiraito	84.3967	28.5602
655	Chiraito	84.3840	28.5660
656	Chiraito	84.3943	28.5559
657	Chiraito	84.4076	28.5724
658	Gucchi mushroom	84.3731	28.5371

659	Gucchi mushroom	84.3674	28.5331
660	Gucchi mushroom	84.3669	28.5328
661	Gucchi mushroom	84.3630	28.5253
662	Gucchi mushroom	84.3598	28.5242
663	Gucchi mushroom	84.3598	28.5236
664	Guchhi mushroom	84.3709	28.5082
665	Guchhi mushroom	84.3807	28.5023
666	Guchhi mushroom	84.3806	28.5033
667	Guchhi mushroom	84.3854	28.5066
668	Guchhi Mushroom	84.3732	28.5373
669	Guchhi Mushroom	84.3723	28.5361
670	Guchhi mushroom	84.4084	28.5700
671	Guchhi mushroom	84.4005	28.5616
672	Guchhi mushroom	84.3967	28.5602
673	Guchhi mushroom	84.4107	28.5721
674	Kurilo	84.3764	28.4708
675	Kurilo	84.3768	28.4712
676	Kurilo	84.3776	28.4708
677	Kurilo	84.3779	28.4708
678	Kurilo	84.3788	28.4698
679	Kurilo	84.3813	28.4709
680	Kurilo	84.3816	28.4714
681	Kurilo	84.3818	28.4710
682	Kurilo	84.3818	28.4705
683	Kurilo	84.3817	28.4703
684	Kurilo	84.3718	28.5368
685	Kurilo	84.3727	28.5371
686	Kurilo	84.3700	28.5350
687	Kurilo	84.3660	28.5318
688	Kutki	84.4609	28.5224
689	Kutki	84.4667	28.5168
690	Loth salla	84.3678	28.5123
691	Loth salla	84.3680	28.5123
692	Loth salla	84.3702	28.5075
693	Loth salla	84.3769	28.5123
694	Loth salla	84.4082	28.5696
695	Loth salla	84.3938	28.5560
696	Loth salla	84.4102	28.5730
697	Nirmansi	84.3847	28.5067

698	Nirmasi	84.3751	28.5059
699	Nirmasi	84.3768	28.5043
700	Nirmasi	84.3826	28.5045
701	Nirmasi	84.3834	28.5060
702	Nirmasi	84.3846	28.5064
703	Nirmasi	84.3845	28.5065
704	Nirmasi	84.3768	28.5037
705	Nirmasi	85.3997	28.5189
706	Nirmasi	84.3846	28.5077
707	Nirmasi	84.3847	28.5078
708	Nirmasi	84.3849	28.5077
709	Nirmasi	84.3851	28.5071
710	Nirmasi	84.3854	28.5069
711	Nirmasi	84.3854	28.5067
712	Nirmasi	84.3849	28.5063
713	Nirmasi	84.3844	28.5064
714	Nirmasi	84.3833	28.5000
715	Nirmasi	84.3791	28.5033
716	Nirmasi	84.3790	28.5034
717	Okhar	84.3657	28.5124
718	Okhar	84.3659	28.5121
719	Okhar	84.3675	28.5131
720	Okhar	84.3690	28.5124
721	Okhar	84.3656	28.5126
722	Okhar	84.3730	28.5376
723	Okhar	84.3728	28.5364
724	Okhar	84.3716	28.5357
725	Okhar	84.3716	28.5357
726	Okhar	84.3697	28.5359
727	Okhar	84.3625	28.5244
728	okhar	84.4074	28.5668
729	Okhar	84.4065	28.5657
730	Okhar	84.4085	28.5655
731	Okhar	84.4007	28.5619
732	Okhar	84.4005	28.5619
733	Okhar	84.4005	28.5617
734	Okhar	84.3994	28.5608
735	Okhar	84.3987	28.5607
736	Okhar	84.3977	28.5606

737	Okhar	84.3832	28.5600
738	Okhar	84.3948	28.5564
739	okhar	84.4081	28.5684
740	Okhar	84.4107	28.5718
741	Paakhanved	84.3662	28.5119
742	Paakhanved	84.3667	28.5118
743	Paakhanved	84.3668	28.5122
744	Paakhanved	84.3683	28.5122
745	Paakhanved	84.3695	28.5116
746	Paakhanved	84.3697	28.5110
747	Paakhanved	84.3657	28.5127
748	Paakhanved	84.3808	28.5023
749	Paakhanved	84.3762	28.4708
750	Paakhanved	84.3764	28.4708
751	paakhanved	84.3729	28.5367
752	paakhanved	84.3725	28.5362
753	Pakhanved	84.3748	28.5386
754	Pakhanved	84.3715	28.5369
755	Pakhanved	84.3618	28.5265
756	Panchaule	84.3840	28.5073
757	Panchaule	84.3848	28.5075
758	Panchaule	84.4693	28.6616
759	Panchaule	84.3576	28.5658
760	Panchaule	84.3622	28.5798
761	Panchaule	84.4775	28.5106
762	Panchaule	84.4675	28.6512
763	Panchaule	84.4741	28.6629
764	Panchaule	84.4686	28.6585
765	Panchaule	84.4743	28.6634
766	Satuwa	84.3669	28.5117
767	Satuwa	84.3693	28.5118
768	Satuwa	84.3703	28.5107
769	Satuwa	84.3708	28.5101
770	Satuwa	84.3833	28.5062
771	Satuwa	84.3779	28.5039
772	Satuwa	84.3772	28.5042
773	Satuwa	84.3787	28.5030
774	Satuwa	84.3793	28.5033
775	Satuwa	84.3852	28.5070

776	Satuwa	84.3852	28.5070
777	Satuwa	84.3853	28.5070
778	Satuwa	84.3855	28.5069
779	Satuwa	84.3854	28.5066
780	Satuwa	84.3837	28.5064
781	Satuwa	84.3833	28.5059
782	Satuwa	84.3817	28.5022
783	Satuwa	84.3791	28.5034
784	Satuwa	84.3805	28.4706
785	Satuwa	84.3810	28.4705
786	Satuwa	84.3812	28.4710
787	Satuwa	84.3825	28.4711
788	Satuwa	84.3817	28.4783
789	Satuwa	84.3821	28.4713
790	Satuwa	84.3822	28.4711
791	Satuwa	84.3820	28.4708
792	Satuwa	84.3819	28.4707
793	Satuwa	84.3819	28.4705
794	Satuwa	84.3818	28.4701
795	Satuwa	84.3813	28.4699
796	Satuwa	84.3809	28.4697
797	Satuwa	84.3805	28.4695
798	Satuwa	84.3809	28.4705
799	Satuwa	84.3813	28.4707
800	Satuwa	84.3814	28.4712
801	Satuwa	84.3817	28.4715
802	Satuwa	84.3818	28.4714
803	Satuwa	84.3817	28.4712
804	Satuwa	84.3817	28.4711
805	Satuwa	84.3817	28.4710
806	Satuwa	84.3820	28.4707
807	Satuwa	84.3819	28.4705
808	Satuwa	84.3817	28.4705
809	Satuwa	84.3817	28.4702
810	Satuwa	84.3818	28.4701
811	Satuwa	84.3820	28.4701
812	Satuwa	84.3814	28.4789
813	Satuwa	84.3816	28.4700
814	Satuwa	84.3813	28.4700

815	Satuwa	84.3806	28.4701
816	Satuwa	84.3735	28.5370
817	Satuwa	84.3730	28.5368
818	Satuwa	84.3728	28.5365
819	Satuwa	84.3729	28.5364
820	Satuwa	84.3719	28.5367
821	Satuwa	84.3718	28.5368
822	Satuwa	84.3717	28.5367
823	Satuwa	84.3715	28.5368
824	Satuwa	84.3679	28.5334
825	Satuwa	84.3596	28.5225
826	Satuwa	84.3599	28.5219
827	Satuwa	84.3601	28.5219
828	Satuwa	84.4079	28.5690
829	Satuwa	84.4079	28.5683
830	Satuwa	84.4074	28.5669
831	Satuwa	84.4068	28.5662
832	Satuwa	84.4050	28.5644
833	Satuwa	84.4047	28.5645
834	Satuwa	84.4029	28.5636
835	Satuwa	84.4025	28.5635
836	Satuwa	84.4022	28.5635
837	Satuwa	84.4004	28.5615
838	Satuwa	84.3928	28.5614
839	Satuwa	84.3930	28.5609
840	Satuwa	84.3941	28.5559
841	Satuwa	84.4101	28.5740
842	Satuwa	84.4100	28.5735
843	Satuwa	84.4105	28.5716
844	Siltimur	84.3686	28.5338
845	Siltimur	84.3631	28.5275
846	Sugandhawal	84.3708	28.5103
847	Sugandhawal	84.3709	28.5102
848	Sugandhawal	84.3701	28.5102
849	Sugandhawal	84.3708	28.5096
850	Sugandhawal	84.3710	28.5092
851	Sugandhawal	84.3710	28.5075
852	Sugandhawal	84.3721	28.5368
853	Sugandhawal	84.3626	28.5264

	•	•	
854	Sugandhawal	84.4034	28.5646
855	Sugandhawal	84.4035	28.5639
856	Sugandhawal	84.4035	28.5638
857	Sugandhawal	84.3987	28.5607
858	Sugandhawal	84.4103	28.5729
859	Sughandawal	84.3727	28.5365
860	Sughandawal	84.3728	28.5364
861	Sughandawal	84.3693	28.5346
862	Sugandhawal	84.4035	84.4035
863	Sugandhawal	84.3987	84.3987
864	Sugandhawal	84.4103	84.4103
865	Sughandawal	84.3727	84.3727
866	Sughandawal	84.3728	84.3728
867	Sughandawal	84.3693	84.3693
868	Timur	84.3727	84.3727
869	Timur	84.3727	84.3727
870	Timur	84.3724	84.3724
871	Timur	84.3895	84.3895
872	Timur	84.3939	84.3939
873	Timur	84.3938	84.3938
874	Timur	84.3934	84.3934
875	Timur	84.3727	28.5365
876	Timur	84.3727	28.5366
877	Timur	84.3724	28.5362
878	Timur	84.3895	28.5661
879	Timur	84.3939	28.5559
880	Timur	84.3938	28.5557
881	Timur	84.3934	28.5556